2,253
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Bacterial Cellulose: Natural Biomaterial for Medical and Environmental Applications

, , , , &

References

  • Adebayo-Tayo, B., M. Akintunde, and J. Sanusi. 2017. Effect of different fruit juice media on bacterial cellulose production by Acinetobacter sp. BAN1 and Acetobacter pasteurianus PW1. Journal of Advances in Biology & Biotechnology 14 (3):1–20. doi:10.9734/JABB/2017/34171.
  • Albuquerque, R. M. B., H. M. Meira, I. D. L. Silva, C. J. G. Silva, F. C. G. Almeida, J. D. P. Amorim, L. A. Sarubbo, A. F. S. Costa, and L. A. Sarubbo. 2020. Production of a bacterial cellulose/poly(3-hydroxybutyrate) blend activated with clove essential oil for food packaging. Polymers & Polymer Composites 29 (4):259–70. doi:10.1177/0967391120912098.
  • Andritsou, V., E. M. de Melo, E. Tsouko, D. Ladakis, S. Maragkoudaki, A. A. Koutinas, and A. S. Matharu. 2018. Synthesis and characterization of bacterial cellulose from citrus-based sustainable resources. ACS Omega 3 (8):10365–73. doi:10.1021/acsomega.8b01315.
  • Aydin, Y. A., and N. D. Aksoy. 2014. Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Applied Microbiology and Biotechnology 98 (3):1065–75. doi:10.1007/s00253-013-5296-9.
  • Azeredo, H. M., H. Barud, C. S. Farinas, V. M. Vasconcellos, and A. M. Claro. 2019. Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems 3:7. doi:10.3389/fsufs.2019.00007.
  • Azmi, S. N. N. S., S. N. N. F. M. Fabli, F. A. F. Aris, A. S. F. M. Asnawi, Y. M. Yusof, H. Abdullah, S. S. S. Ariffin, and S. S. Syed Abdullah. 2021. Fresh oil palm frond juice as a novel and alternative fermentation medium for bacterial cellulose production. Materials Today: Proceedings 42:101–06. doi:10.1016/j.matpr.2020.10.220.
  • Bandyopadhyay, S., N. Saha, U. V. Brodnjak, and P. Sáha. 2019. Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: Characterized for packaging fresh berries. Food Packaging and Shelf Life 22:100402. doi:10.1016/j.fpsl.2019.100402.
  • Basu, A., S. V. Vadanan, and S. Lim. 2018. A novel platform for evaluating the environmental impacts on bacterial cellulose production. Scientific Reports 8 (1):5780. doi:10.1038/s41598-018-23701-y.
  • Bethke, K., S. Palantöken, V. Andrei, M. Roß, V. S. Raghuwanshi, F. Kettemann, K. Rademann, T. T. K. Ingber, J. B. Stückrath, S. Valiyaveettil, et al. 2018. Functionalized cellulose for water purification, antimicrobial applications, and sensors. Advanced Functional Materials 28 (23):1800409. doi:10.1002/adfm.201800409.
  • Blanco, A., M. C. Monte, C. Campano, A. Balea, N. Merayo, and C. Negro. 2018. Nanocellulose for industrial use. Handbook of Nanomaterials for Industrial Applications 74–126.
  • Blanco Parte, F. G., S. P. Santoso, C. C. Chou, V. Verma, H. T. Wang, S. Ismadji, and K. C. Cheng. 2020. Current progress on the production, modification, and applications of bacterial cellulose. Critical Reviews in Biotechnology 40 (3):397–414. doi:10.1080/07388551.2020.1713721.
  • Brandes, R., C. Carminatti, A. Mikowski, H. Al-Qureshi, and D. Recouvreux. 2017. A mini-review on the progress of spherical bacterial cellulose production. Journal of Nano Research 45:142–54. doi:10.4028/0000www.scientific.net/JNanoR.45.142.
  • Brown, A. J. 1886. XLIII.—On an acetic ferment which forms cellulose. Journal of the Chemical Society 49:432–39. doi:10.1039/CT8864900432.
  • Buldum, G., A. Bismarck, and A. Mantalaris. 2018. Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess and Biosystems Engineering 41:265–79. doi:10.1007/s00449-017-1864-1.
  • Cacicedo, M. L., M. C. Castro, I. Servetas, L. Bosnea, K. Boura, P. Tsafrakidou, G. R. Castro, A. Terpou, A. Koutinas, and G. R. Castro. 2016. Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology 213:172–80. doi:10.1016/j.biortech.2016.02.071.
  • Cacicedo, M. L., G. A. Islan, I. E. León, V. A. Alvarez, I. Chourpa, E. Allard-Vannier, G. R. Castro, Z. V. Díaz-Riascos, Y. Fernández, S. Schwartz, et al. 2018. Bacterial cellulose hydrogel loaded with lipid nanoparticles for localized cancer treatment. Colloids and Surfaces B, Biointerfaces 170:596–608. doi:10.1016/j.colsurfb.2018.06.056.
  • Carreira, P., J. A. Mendes, E. Trovatti, L. S. Serafim, C. S. Freire, A. J. Silvestre, and C. P. Neto. 2011. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource Technology 102 (15):7354–60. doi:10.1016/j.biortech.2011.04.081.
  • Castro, C., R. Zuluaga, J. L. Putaux, G. Caro, I. Mondragon, and P. Gañán. 2011. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers 84 (1):96–102. doi:10.1016/j.carbpol.2010.10.072.
  • Cazón, P., and M. Vázquez. 2021. Bacterial cellulose as a biodegradable food packaging material: A review. Food Hydrocolloids 113. doi:10.1016/j.foodhyd.2020.106530.
  • Cerrutti, P., P. Roldán, R. M. García, M. A. Galvagno, A. Vázquez, and M. L. Foresti. 2016. Production of bacterial nanocellulose from wine industry residues: I mportance of fermentation time on pellicle characteristics. Journal of Applied Polymer Science 133 (14). doi:10.1002/app.43109.
  • Chaabane, L., H. Chahdoura, R. Mehdaoui, M. Snoussi, E. Beyou, M. Lahcini, and M. H. V. Baouab. 2020. Functionalization of developed bacterial cellulose with magnetite nanoparticles for nanobiotechnology and nanomedicine applications. Carbohydrate Polymers 247:116707. doi:10.1016/j.carbpol.2020.116707.
  • Chawla, P. R., I. B. Bajaj, S. A. Survase, and R. S. Singhal. 2009. Microbial cellulose: Fermentative production and applications. Food Technology and Biotechnology 47 (2):107–124.
  • Choi, S. M., K. M. Rao, S. M. Zo, E. J. Shin, and S. S. Han. 2022. Bacterial cellulose and its applications. Polymers (Basel) 14 (6). doi: 10.3390/polym14061080.
  • Chu, M., H. Gao, S. Liu, L. Wang, Y. Jia, M. Gao, L. Ren, C. Xu, and L. Ren. 2018. Functionalization of composite bacterial cellulose with C 60 nanoparticles for wound dressing and cancer therapy. RSC Advances 8 (33):18197–203. doi:10.1039/C8RA03965H.
  • Coelho, F., G. V. Do Vale Braido, M. Cavicchioli, L. S. Mendes, S. S. Specian, L. P. Franchi, T. S. O. Capote, Y. Messaddeq, R. M. Scarel-Caminaga, and T. S. O Capote. 2019. Toxicity of therapeutic contact lenses based on bacterial cellulose with coatings to provide transparency. Contact Lens and Anterior Eye 42 (5):512–19. doi:10.1016/j.clae.2019.03.006.
  • Czaja, W., A. Krystynowicz, M. Kawecki, K. Wysota, S. Sakiel, P. Wróblewski, and S. Bielecki. 2007. Biomedical applications of microbial cellulose in burn wound recovery. Cellulose: Molecular and Structural Biology: Selected Articles on the Synthesis, Structure, and Applications of Cellulose 1: 307–21.
  • Czaja, W., D. Romanovicz, and R. M. Brown. 2004. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–11. doi:10.1023/B:CELL.0000046412.11983.61.
  • Dahman, Y. 2009. Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. Journal of Nanoscience and Nanotechnology 9 (9):5105–22. doi:10.1166/jnn.2009.1466.
  • da Silva, F. M., and I. C. Gouveia. 2015. The role of technology towards a new bacterial-cellulose-based material for fashion design. Journal of Industrial and Intelligent Information 3 (2):168–172.
  • Debela, D. T., S. G. Muzazu, K. D. Heraro, M. T. Ndalama, B. W. Mesele, D. C. Haile, T. Manyazewal, and T. Manyazewal. 2021. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine 9:20503121211034366. doi:10.1177/20503121211034366.
  • Dikshit, P. K., and B. S. Kim. 2020. Bacterial cellulose production from biodiesel–derived crude glycerol, magnetic functionalization, and its application as carrier for lipase immobilization. International Journal of Biological Macromolecules 153:902–11. doi:10.1016/j.ijbiomac.2020.03.047.
  • El-Gendi, H., T. H. Taha, J. B. Ray, and A. K. Saleh. 2022. Recent advances in bacterial cellulose: A low-cost effective production media, optimization strategies and applications. Cellulose 29 (14):7495–533. doi:10.1007/s10570-022-04697-1.
  • Fan, X., Y. Gao, W. He, H. Hu, M. Tian, K. Wang, and S. Pan. 2016. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydrate Polymers 151:1068–72. doi:10.1016/j.carbpol.2016.06.062.
  • Faria, M., C. Cunha, M. Gomes, I. Mendonca, M. Kaufmann, A. Ferreira, and N. Cordeiro. 2022. Bacterial cellulose biopolymers: The sustainable solution to water-polluting microplastics. Water Research 222:118952. doi:10.1016/j.watres.2022.118952.
  • García-Sánchez, M. E., J. R. Robledo-Ortiz, I. Jiménez-Palomar, O. González-Reynoso, and Y. González-García. 2020. Production of bacterial cellulose by Komagataeibacter xylinus using mango waste as alternative culture medium. Revista Mexicana de Ingeniería Química 19 (2):851–65. doi:10.24275/rmiq/Bio743.
  • Gomes, F. P., N. H. Silva, E. Trovatti, L. S. Serafim, M. F. Duarte, A. J. Silvestre, C. S. Freire, and C. S. R. Freire. 2013. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass & bioenergy 55:205–11. doi:10.1016/j.biombioe.2013.02.004.
  • Goncalves, S., J. Padrao, I. P. Rodrigues, J. P. Silva, V. Sencadas, S. Lanceros-Mendez, L. R. Rodrigues, F. Dourado, and L. R. Rodrigues. 2015. Bacterial cellulose as a support for the growth of retinal pigment epithelium. Biomacromolecules 16 (4):1341–51. doi:10.1021/acs.biomac.5b00129.
  • Gorgieva, S., and J. Trček. 2019. Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials 9 (10):1352. doi:10.3390/nano9101352.
  • Gregory, D. A., L. Tripathi, A. T. R. Fricker, E. Asare, I. Orlando, V. Raghavendran, and I. Roy. 2021. Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science & Engineering: R: Reports 145:100623. doi:10.1016/j.mser.2021.100623.
  • Gu, J., and J. M. Catchmark. 2012. Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydrate Polymers 88 (2):547–57. doi:10.1016/j.carbpol.2011.12.040.
  • Güzel, M., and Ö. Akpınar. 2020. Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016. International Journal of Biological Macromolecules 162:1597–604. doi:10.1016/j.ijbiomac.2020.08.049.
  • Hallac, B. B., and A. J. Ragauskas. 2011. Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioproducts and Biorefining 5 (2):215–25. doi:10.1002/bbb.269.
  • Han, Y., C. Li, Q. Cai, X. Bao, L. Tang, H. Ao, Z. Liu, M. Jin, Y. Zhou, Y. Wan, et al. 2020. Studies on bacterial cellulose/poly (vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma. Biomedical Materials 15 (3):035022. doi:10.1088/1748-605X/ab56ca.
  • Hasanin, M. S., M. Abdelraof, A. H. Hashem, and H. El Saied. 2023. Sustainable bacterial cellulose production by Achromobacter using mango peel waste. Microbial Cell Factories 22 (1):24. doi:10.1186/s12934-023-02031-3.
  • Hassanpour, S. H., and M. Dehghani. 2017. Review of cancer from perspective of molecular. Journal of Cancer Research and Practice 4 (4):127–29. doi:10.1016/j.jcrpr.2017.07.001.
  • Hassan, A., N. M. Sorour, A. El-Baz, and Y. Shetaia. 2018. Simple synthesis of bacterial cellulose/magnetite nanoparticles composite for the removal of antimony from aqueous solution. International Journal of Environmental Science & Technology 16 (3):1433–48. doi:10.1007/s13762-018-1737-4.
  • Hegde, S., G. Bhadri, K. Narsapur, S. Koppal, P. Oswal, N. Turmuri, and B. Hungund. 2013. Statistical optimization of medium components by response surface methodology for enhanced production of bacterial cellulose by Gluconacetobacter persimmonis. Journal of Bioprocessing & Biotechnology 4 (1):1À5.
  • Herbert, M., and T. Nikita Tawanda. 2022. Cellulose composites tethered with smartness and their application during wastewater remediation. Reactive & Functional Polymers 178:105332. doi:10.1016/j.reactfunctpolym.2022.105332.
  • Hosseini, H., and S. M. Mousavi. 2021. Bacterial cellulose/polyaniline nanocomposite aerogels as novel bioadsorbents for removal of hexavalent chromium: Experimental and simulation study. Journal of Cleaner Production 278. doi:10.1016/j.jclepro.2020.123817.
  • Hsieh, J. T., M. J. Wang, J. T. Lai, and H. S. Liu. 2016. A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. Journal of the Taiwan Institute of Chemical Engineers 63:46–51. doi:10.1016/j.jtice.2016.03.020.
  • Huang, X., X. Zhan, C. Wen, F. Xu, and L. Luo. 2018. Amino-functionalized magnetic bacterial cellulose/activated carbon composite for Pb 2+ and methyl orange sorption from aqueous solution. Journal of Materials Science and Technology 34 (5):855–63. doi:10.1016/j.jmst.2017.03.013.
  • Huang, Y., C. Zhu, J. Yang, Y. Nie, C. Chen, and D. Sun. 2014. Recent advances in bacterial cellulose. Cellulose 21:1–30. doi:10.1007/s10570-013-0088-z.
  • Hu, Y., F. Liu, Y. Sun, X. Xu, X. Chen, B. Pan, J. Qian, and J. Qian. 2019. Bacterial cellulose derived paper-like purifier with multifunctionality for water decontamination. Chemical Engineering Journal 371:730–37. doi:10.1016/j.cej.2019.04.091.
  • Jonas, R., and L. F. Farah. 1998. Production and application of microbial cellulose. Polymer Degradation & Stability 59 (1–3):101–06. doi:10.1016/S0141-3910(97)00197-3.
  • Jozala, A. F., L. C. de Lencastre-Novaes, A. M. Lopes, V. de Carvalho Santos-Ebinuma, P. G. Mazzola, A. Pessoa-Jr, M. V. Chaud, M. Gerenutti, and M. V. Chaud. 2016. Bacterial nanocellulose production and application: A 10-year overview. Applied Microbiology and Biotechnology 100:2063–72. doi:10.1007/s00253-015-7243-4.
  • Keshk, S. M. 2014. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydrate Polymers 99:98–100. doi:10.1016/j.carbpol.2013.08.060.
  • Khami, S., W. Khamwichit, K. Suwannahong, and W. Sanongraj. 2014. Characteristics of bacterial cellulose production from agricultural wastes. Advanced Materials Research 931–932:693–97. doi:10.0931/932.693.
  • Kongruang, S. 2008. Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Applied Biochemistry and Biotechnology 148 (1–3):245–56. doi:10.1007/s12010-007-8119-6.
  • Krystynowicz, A., W. Czaja, A. Wiktorowska-Jezierska, M. Gonçalves-Miśkiewicz, M. Turkiewicz, and S. Bielecki. 2002. Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology & Biotechnology 29 (4):189–95. doi:10.1038/sj.jim.7000303.
  • Kumbhar, J. V., S. H. Jadhav, D. S. Bodas, A. Barhanpurkar-Naik, M. R. Wani, K. M. Paknikar, and J. M. Rajwade. 2017. In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects. International Journal of Nanomedicine 12:6437. doi:10.2147/IJN.S137361.
  • Lai, C., S. J. Zhang, X. C. Chen, L. Y. Sheng, T. W. Qi, and L. P. Yan. 2021. Development of a cellulose-based prosthetic mesh for pelvic organ prolapse treatment: In vivo long-term evaluation in an ewe vagina model. Materials Today Bio 12:100172. doi:10.1016/j.mtbio.2021.100172.
  • Li, S., A. Jasim, W. Zhao, L. Fu, M. W. Ullah, Z. Shi, and G. Yang. 2018. Fabrication of Ph-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Materials & Manufacturing 1 (28):41–49. doi:10.30919/esmm5f120.
  • Li, M., Y. Jie, L. H. Shao, Y. Guo, X. Cao, N. Wang, and Z. L. Wang. 2019. All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Research 12:1831–35. doi:10.1007/s12274-019-2443-3.
  • Li, D., X. Tian, Z. Wang, Z. Guan, X. Li, H. Qiao, Q. Wei, L. Luo, and Q. Wei. 2020. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chemical Engineering Journal 383:123127. doi:10.1016/j.cej.2019.123127.
  • Liu, F., C. Chen, and J. Qian. 2021. Film-like bacterial cellulose/cyclodextrin oligomer composites with controllable structure for the removal of various persistent organic pollutants from water. Journal of Hazardous Materials 405:124122. doi:10.1016/j.jhazmat.2020.124122.
  • Liu, Y., Q. Fu, J. Mo, Y. Lu, C. Cai, B. Luo, and S. Nie. 2021. Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy 89:106369. doi:10.1016/j.nanoen.2021.106369.
  • Liu, Y. H., J. L. Mo, Q. Fu, Y. X. Lu, N. Zhang, S. F. Wang, and S. X. Nie. 2020. Enhancement of triboelectric charge density by chemical functionalization. Advanced Functional Materials 30:2004714. doi:10.1002/adfm.202004714.
  • Luo, H., H. Ao, G. Li, W. Li, G. Xiong, Y. Zhu, and Y. Wan. 2017. Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Current Applied Physics 17 (2):249–54. doi:10.1016/j.cap.2016.12.001.
  • Ma, X., Y. Lou, X.-B. Chen, Z. Shi, and Y. Xu. 2019. Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chemical Engineering Journal 356:227–35. doi:10.1016/j.cej.2018.09.034.
  • Maneerung, T., S. Tokura, and R. Rujiravanit. 2008. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers 72 (1):43–51. doi:10.1016/j.carbpol.2007.07.025.
  • Maruthupandy, M., D. Riquelme, G. Rajivgandhi, T. Muneeswaran, W.-S. Cho, M. Anand, F. Quero, and F. Quero. 2021. Dual-role of graphene/bacterial cellulose/magnetite nanocomposites as highly effective antibacterial agent and visible-light-driven photocatalyst. Journal of Environmental Chemical Engineering 9 (5):106014. doi:10.1016/j.jece.2021.106014.
  • Mehran, M., T. Hossein, A. Hadi, F. Mehrdad, and E. Parya. 2019. A novel Ph-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydrate Polymers 222:115030. doi:10.1016/j.carbpol.2019.115030.
  • Mendonca, I., J. Sousa, C. Cunha, M. Faria, A. Ferreira, and N. Cordeiro. 2023. Solving urban water microplastics with bacterial cellulose hydrogels: Leveraging predictive computational models. Chemosphere 314:137719. doi:10.1016/j.chemosphere.2022.137719.
  • Mihranyan, A. 2011. Cellulose from cladophorales green algae: From environmental problem to high‐tech composite materials. Journal of Applied Polymer Science 119 (4):2449–60. doi:10.1002/app.32959.
  • Mohamad, N., F. Buang, A. Mat Lazim, N. Ahmad, C. Martin, and M. C. I. Mohd Amin. 2017. Characterization and biocompatibility evaluation of bacterial cellulose‐based wound dressing hydrogel: Effect of electron beam irradiation doses and concentration of acrylic acid. Journal of Biomedical Materials Research Part B, Applied Biomaterials 105 (8):2553–64. doi:10.1002/jbm.b.33776.
  • Mohammadkazemi, F., K. Doosthoseini, and M. Azin. 2015. Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734). Cellolose Chemistry and Technology 49 (5–6):455–62.
  • Mohite, B. V., and S. V. Patil. 2014. Bacterial cellulose of Gluconoacetobacter hansenii as a potential bioadsorption agent for its green environment applications. Journal of Biomaterials Science Polymer Edition 25 (18):2053–65. doi:10.1080/09205063.2014.970063.
  • Moukamnerd, C., K. Ounmuang, N. Konboa, and C. Insomphun. 2020. Bacterial cellulose production by Komagataeibacter nataicola TISTR 2661 by agro-waste as a carbon source. Chiang Mai Journal of Science 47:16–27.
  • Muhamad, I. I., S. N. H. Muhamad, M. H. Salehudin, K. A. Zahan, W. Y. Tong, and N. Pa’e. 2020. Effect of pandan extract concentration to chromium (IV) removal using bacterial cellulose-pandan composites prepared by in-situ modification technique. Materials Today: Proceedings 31:89–95. doi:10.1016/j.matpr.2020.01.204.
  • Narwade, V. N., H. R. Tiyyagura, Y. B. Pottathara, M. A. Lakhane, I. Banerjee, V. V. Kusumkar, K. A. Bogle, M. Galamboš, R. U. Mene, and K. A. Bogle. 2022. Nanocellulose for gas sensor applications. In Nanotechnology for electronic applications 169–85. Springer. 10.1007/978-981-16-6022-1_9
  • Pacheco, G., C. R. Nogueira, A. B. Meneguin, E. Trovatti, M. C. Silva, R. T. Machado, S. J. Ribeiro, E. C. da Silva Filho, and H. D. Barud. 2017. Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Industrial Crops and Products 107:13–19. doi:10.1016/j.indcrop.2017.05.026.
  • Pang, M., Y. Huang, F. Meng, Y. Zhuang, H. Liu, M. Du, Y. Cai, Q. Wang, Z. Chen, L. Chen, et al. 2020. Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal 122:109365. doi:10.1016/j.eurpolymj.2019.109365.
  • Patrícia, S. M., F. J. Angela, P. Adalberto Jr., M. D. C. V. Marta, M. B. Victor, and D. G. M. F. Bernadette. 2018. Immobilization of antimicrobial peptides from Lactobacillus sakei subsp. sakei 2a in bacterial cellulose: Structural and functional stabilization. Food Packaging and Shelf Life 17:25–29. doi:10.1016/j.fpsl.2018.05.001.
  • Picheth, G. F., C. L. Pirich, M. R. Sierakowski, M. A. Woehl, C. N. Sakakibara, C. F. de Souza, R. A. de Freitas, R. da Silva, and R. A. de Freitas. 2017. Bacterial cellulose in biomedical applications: A review. International Journal of Biological Macromolecules 104:97–106. doi:10.1016/j.ijbiomac.2017.05.171.
  • Pirich, C. L., R. A. de Freitas, R. M. Torresi, G. F. Picheth, and M. R. Sierakowski. 2017. Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection. Biosensors & Bioelectronics 92:47–53. doi:10.1016/j.bios.2017.01.068.
  • Popa, L., M. V. Ghica, E.-E. Tudoroiu, D.-G. Ionescu, and C.-E. Dinu-Pîrvu. 2022. Bacterial cellulose—a remarkable polymer as a source for biomaterials tailoring. Materials 15 (3):1054. doi:10.3390/ma15031054.
  • Portela, R., C. R. Leal, P. L. Almeida, and R. G. Sobral. 2019. Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microbial Biotechnology 12 (4):586–610. doi:10.1111/1751-7915.13392.
  • Provin, A. P., A. L. V. Cubas, A. R. D. A. Dutra, and N. K. Schulte. 2021. Textile industry and environment: Can the use of bacterial cellulose in the manufacture of biotextiles contribute to the sector? Clean Technologies and Environmental Policy 23 (10):2813–25. doi:10.1007/s10098-021-02191-z.
  • Qin, H., Y. Chen, J. Huang, and Q. Wei. 2021. Bacterial cellulose reinforced polyaniline electroconductive hydrogel with multiple weak H‐bonds as flexible and sensitive strain sensor. Macromolecular Materials and Engineering 306 (8):2100159. doi:10.1002/mame.202100159.
  • Qinghua, X., W. Yulu, J. Liqiang, W. Yu, and Q. Menghua. 2017. Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. Journal of Hazardous Materials 339:91–99. doi:10.1016/j.jhazmat.2017.06.005.
  • Rahman, A., S. Kang, W. Wang, Q. Huang, I. Kim, and P. J. Vikesland. 2022. Lectin-modified bacterial cellulose nanocrystals decorated with au nanoparticles for selective detection of bacteria using surface-enhanced raman scattering coupled with machine learning. Acs Applied Nano Materials 5 (1):259–68. doi:10.1021/acsanm.1c02760.
  • Rahman, S. S. A., T. Vaishnavi, G. S. Vidyasri, K. Sathya, P. Priyanka, P. Venkatachalam, and S. Karuppiah. 2021. Production of bacterial cellulose using Gluconacetobacter kombuchae immobilized on Luffa aegyptiaca support. Scientific Reports 11 (1):1–15. doi:10.1038/s41598-021-82596-4.
  • Robson, R. S., A. R.-P. Paulo, M. C. Anderson, W. Deivy, G. O. Caio, S. B. Hernane, N. Osvaldo, R. R. Domeneguetti, D. T. Balogh, S. J. L. Ribeiro, et al. 2020. Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta 218:121153. doi:10.1016/j.talanta.2020.121153.
  • Römling, U., and M. Y. Galperin. 2015. Bacterial cellulose biosynthesis: Diversity of operons, subunits, products, and functions. Trends in Microbiology 23 (9):545–57. doi:10.1016/j.tim.2015.05.005.
  • Ross, P., R. Mayer, and M. Benziman. 1991. Cellulose biosynthesis and function in bacteria. Microbiological Reviews 55 (1):35–58. doi:10.1128/mr.55.1.35-58.1991.
  • R. Rebelo, A., A. J. Archer, X. Chen, C. Liu, G. Yang, and Y. Liu. 2018. Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Science and Technology of Advanced Materials 19 (1):203–11. doi:10.1080/14686996.2018.1430981.
  • Ruka, D. R., G. P. Simon, and K. Dean. 2014. Harvesting fibrils from bacterial cellulose pellicles and subsequent formation of biodegradable poly-3-hydroxybutyrate nanocomposites. Cellulose 21:4299–308. doi:10.1007/s10570-014-0415-z.
  • Salehi, M. H., H. Golbaten-Mofrad, S. H. Jafari, V. Goodarzi, M. Entezari, M. Hashemi, and S. Zamanlui. 2021. Electrically conductive biocompatible composite aerogel based on nanofibrillated template of bacterial cellulose/polyaniline/nano-clay. International Journal of Biological Macromolecules 173:467–80. doi:10.1016/j.ijbiomac.2021.01.121.
  • Samaneh, G., B. Mahmoud Rezazadeh, P. Sajad, and A. Saber. 2020. Use of bacterial cellulose film modified by polypyrrole/TiO2-Ag nanocomposite for detecting and measuring the growth of pathogenic bacteria. Carbohydrate Polymers 232:115801. doi:10.1016/j.carbpol.2019.115801.
  • Sani, A., and Y. Dahman. 2010. Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods. Journal of Chemical Technology & Biotechnology 85 (2):151–64. doi:10.1002/jctb.2300.
  • Seddiqi, H., E. Oliaei, H. Honarkar, J. Jin, L. C. Geonzon, R. G. Bacabac, and J. Klein-Nulend. 2021. Cellulose and its derivatives: Towards biomedical applications. Cellulose 28 (4):1893–931.
  • Sepúlveda, R. V., F. L. Valente, E. C. Reis, F. R. Araújo, R. B. Eleotério, P. V. Queiroz, and A. P. Borges. 2016. Bacterial cellulose and bacterial cellulose/polycaprolactone composite as tissue substitutes in rabbits’ cornea. Pesquisa Veterinária Brasileira 36:986–92. doi:10.1590/s0100-736x2016001000011.
  • Serafica, G., R. Mormino, and H. Bungay. 2002. Inclusion of solid particles in bacterial cellulose. Applied Microbiology and Biotechnology 58 (6):756–60. doi:10.1007/s00253-002-0978-8.
  • Sharma, M., R. Aguado, D. Murtinho, A. J. M. Valente, A. P. Mendes De Sousa, and P. J. T. Ferreira. 2020. A review on cationic starch and nanocellulose as paper coating components. International Journal of Biological Macromolecules 162:578–98. doi:10.1016/j.ijbiomac.2020.06.131.
  • Sharma, C., N. K. Bhardwaj, and P. Pathak. 2021. Static intermittent fed-batch production of bacterial nanocellulose from black tea and its modification using chitosan to develop antibacterial green packaging material. Journal of Cleaner Production 279:123608. doi:10.1016/j.jclepro.2020.123608.
  • Shi, Q.-S., J. Feng, W.-R. Li, G. Zhou, A.-M. Chen, and Y.-S. Ouyang. 2013. Effect of different conditions on the average degree of polymerization of bacterial cellulose produced by Gluconacetobacter intermedius BC-41. Cellulose Chemistry and Technology 47 (7–8):503–08.
  • Singhaboot, P., and P. Kroeksakul. 2022. High performance of bacterial strain isolated from bio-extract for cellulose production. Pertanika Journal of Tropical Agricultural Science 45 (4):1161–75. doi:10.47836/pjtas.45.4.18.
  • Singh, O., P. S. Panesar, and H. K. Chopra. 2017. Response surface optimization for cellulose production from agro industrial waste by using new bacterial isolate Gluconacetobacter xylinus C18. Food Science & Biotechnology 26:1019–28. doi:10.1007/s10068-017-0143-x.
  • Singhsa, P., R. Narain, and H. Manuspiya. 2018. Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose 25 (3):1571–81.
  • Skiba, E. A., V. V. Budaeva, E. V. Ovchinnikova, E. K. Gladysheva, E. I. Kashcheyeva, I. N. Pavlov, and G. V. Sakovich. 2020. A technology for pilot production of bacterial cellulose from oat hulls. Chemical Engineering Journal 383:123128. doi:10.1016/j.cej.2019.123128.
  • Song, S., Z. Liu, J. Zhang, C. Jiao, L. Ding, and S. Yang. 2020. Synthesis and adsorption properties of novel bacterial cellulose/graphene oxide/attapulgite materials for Cu and Pb ions in aqueous solutions. Materials (Basel) 13 (17). doi: 10.3390/ma13173703.
  • Stumpf, T. R., X. Yang, J. Zhang, X. J. M. S. Cao, and E. C. 2018. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Materials Science and Engineering: C 82:372–83.
  • Sulaeva, I., U. Henniges, T. Rosenau, and A. J. B. A. Potthast. 2015. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnology Advances 33 (8):1547–71.
  • Tang, P., S. Eckstein, B. Ji, B. Pan, and G. Sun. 2022. Hierarchical porous nanofibrous aerogels with wide-distributed pore sizes for instantaneous organophosphorus pesticides decontamination-and-fluorescence sensing. Chemical Engineering Journal 450:138183.
  • Torres, F. G., O. P. Troncoso, K. N. Gonzales, R. M. Sari, and S. Gea. 2020. Bacterial cellulose‐based biosensors. Medical Devices & Sensors 3 (5):e10102.
  • Treesuppharat, W., P. Rojanapanthu, C. Siangsanoh, H. Manuspiya, and S. Ummartyotin. 2017. Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnology Reports 15:84–91.
  • Trovatti, E., C. S. Freire, P. C. Pinto, I. F. Almeida, P. Costa, and C. J. I. J. O. P. Silvestre. 2012. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: In vitro diffusion studies. International Journal of Pharmaceuticals 435 (1):83–87.
  • Tseng, Y. S., A. K. Patel, C. W. Chen, C. D. Dong, and R. R. Singhania. 2023. Improved production of bacterial cellulose by Komagataeibacter europaeus employing fruit extract as carbon source. Journal of Food Science and Technology 60 (3):1054–64.
  • Ul‐Islam, M., S. Khan, M. W. Ullah, and J. K. Park. 2015. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio‐medical and electro‐conductive fields. Biotechnology Journal 10 (12):1847–61.
  • Ul-Islam, M., S. Khan, M. W. Ullah, and J. K. Park. 2019. Comparative study of plant and bacterial cellulose pellicles regenerated from dissolved states. International Journal of Biological Macromolecules 137:247–52. doi:10.1016/j.ijbiomac.2019.06.232.
  • Ullah, H., H. A. Santos, and T. J. C. Khan. 2016. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23:2291–314.
  • van Zyl, E. M., and J. M. Coburn. 2019. Hierarchical structure of bacterial-derived cellulose and its impact on biomedical applications. Current Opinion in Chemical Engineering 24:122–30.
  • Velásquez-Riaño, M., and V. Bojacá. 2017. Production of bacterial cellulose from alternative low-cost substrates. Cellulose 24:2677–98.
  • Volova, T. G., A. A. Shumilova, I. P. Shidlovskiy, E. D. Nikolaeva, A. G. Sukovatiy, A. D. Vasiliev, and E. I. Shishatskaya. 2018. Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics. Polymer Testing 65:54–68.
  • Wang, W., H. Y. Li, D. W. Zhang, J. Jiang, Y. R. Cui, S. Qiu, and X. X. Zhang. 2010. Fabrication of bienzymatic glucose biosensor based on novel gold nanoparticles‐bacteria cellulose nanofibers nanocomposite. Electroanalysis 22 (21):2543–50.
  • Wang, D., M. H. Sowlat, M. M. Shafer, J. J. Schauer, and C. Sioutas. 2016. Development and evaluation of a novel monitor for online measurement of iron, manganese, and chromium in ambient particulate matter (PM). The Science of the Total Environment 565:123–31. doi:10.1016/j.scitotenv.2016.04.164.
  • Wang, J., C. Sun, Q. X. Huang, Y. Chi, and J. H. Yan. 2021. Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars. Journal of Hazardous Materials 419:126486.
  • Wang, J., J. Tavakoli, and Y. Tang. 2019. Bacterial cellulose production, properties and applications with different culture methods–A review. Carbohydrate Polymers 219:63–76.
  • Wu, Z., S. Chen, J. Li, B. Wang, M. Jin, Q. Liang, and H. Wang. 2023. Insights into hierarchical structure–property–application relationships of advanced bacterial cellulose materials. Advanced Functional Materials 33:2214327. doi:10.1002/adfm.202214327.
  • Wu, J. M., and R. H. Liu. 2013. Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. Journal of Bioscience and Bioengineering 115 (3):284–90.
  • Xu, X., S. Wu, J. Cui, L. Yang, K. Wu, X. Chen, and D. Sun. 2021. Highly stretchable and sensitive strain sensor based on polypyrrole coated bacterial cellulose fibrous network for human motion detection. Composites Part B: Engineering 211. doi:10.1016/j.compositesb.2021.108665.
  • Yang, L., C. Chen, Y. Hu, F. Wei, J. Cui, Y. Zhao, and D. Sun. 2020. Three-dimensional bacterial cellulose/polydopamine/TiO(2) nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation. Journal of Colloid and Interface Science 562:21–28. doi:10.1016/j.jcis.2019.12.013.
  • Ye, J., S. Zheng, Z. Zhang, F. Yang, K. Ma, Y. Feng, and X. Yang. 2019. Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresource Technology 274:518–24.
  • Yin, O. S., I. Ahmad, and M. C. I. M. Amin. 2015. Effect of cellulose nanocrystals content and pH on swelling behaviour of gelatin based hydrogel. Sains Malaysiana 44 (6):793–99.
  • Yoshino, A., M. Tabuchi, M. Uo, H. Tatsumi, K. Hideshima, S. Kondo, and J. J. A. B. Sekine. 2013. Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomaterialia 9 (4):6116–22.
  • Zahan, K. A., N. Pa’e, and I. I. J. S. M. Muhamad. 2016. An evaluation of fermentation period and discs rotation speed of rotary discs reactor for bacterial cellulose production. Sains Malatsiana 45:393–400.
  • Zhang, S., M. Chi, J. Mo, T. Liu, Y. Liu, Q. Fu, J. Wang, B. Luo, Y. Qin, S. Wang, et al. 2022. Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nature Communications 13 (1):1–10. doi:10.1038/s41467-022-31987-w.
  • Zhang, Y., L. Zhang, R. Gao, L. Zhong, and J. Xue. 2021. CaCO(3)-coated PVA/BC-based composite for the simultaneous adsorption of Cu(II), Cd(II), Pb(II) in aqueous solution. Carbohydrate Polymers 267:118227. doi:10.1016/j.carbpol.2021.118227.
  • Zheng, L., S. Li, J. Luo, and X. Wang. 2020. Latest advances on bacterial cellulose-based antibacterial materials as wound dressings. Frontiers in Bioengineering and Biotechnology 8:593768.
  • Zhong, C. 2020. Industrial-scale production and applications of bacterial cellulose. Frontiers in Bioengineering and Biotechnology 8:605374.
  • Zhuang, J., M. Pan, Y. Zhang, F. Liu, and Z. Xu. 2023. Rapid adsorption of directional cellulose nanofibers/3-glycidoxypropyltrimethoxysilane/polyethyleneimine aerogels on microplastics in water. International Journal of Biological Macromolecules 235:123884.
  • Zhu, H., S. Jia, H. Yang, Y. Jia, L. Yan, and J. Li. 2011. Preparation and application of bacterial cellulose sphere: A novel biomaterial. Biotechnology & Biotechnological Equipment 25 (1):2233–36.
  • Zywicka, A., D. Peitler, R. Rakoczy, M. Konopacki, M. Kordas, and K. Fijalkowski. 2015. The effect of different agitation modes on bacterial cellulose synthesis by Gluconacetobacter xylinus strains. Acta Scientiarum Polonorum Zootechnica 14 (1):137‒150.