745
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Chemical Treatment on Rice Straw Fiber Surface and Properties of Straw/Polylactic Acid Composites

, , , , , , , & show all

References

  • Chen, K., P. Li, X. Li, C. Liao, X. Li, and Y. Zuo. 2021. Effect of silane coupling agent on compatibility interface and properties of wheat straw/polylactic acid composites. International Journal of Biological Macromolecules 182:2108–14. doi:10.1016/j.ijbiomac.2021.05.207.
  • de Castro, B. D., M. Fotouhi, L. M. G. Vieira, P. E. de Faria, and J. C. Campos Rubio. 2021. Mechanical behaviour of a green composite from biopolymers reinforced with sisal fibres. Journal of Polymers and the Environment 29 (2):429–40. doi:10.1007/s10924-020-01875-9.
  • Gogoi, R., and A. K. Tyagi. 2019. Surface modification of jute fabric by treating with silane coupling agent for reducing its moisture regain characteristics. Journal of Natural Fibers 18 (6):803–12. doi:10.1080/15440478.2019.1658252.
  • Guo, L., L. Shen, S. Chen, A. Wei, D. Huang, A. Osaka, and W. Chen. 2019. Naturally derived silk fibroin/gelatin composites as novel sacrificial template for synthesis of silica nanotubes with controllable size and their in vitro biocompatibility. Materials Letters 251:89–93. doi:10.1016/j.matlet.2019.05.058.
  • Hou, X., F. Sun, L. Zhang, J. Luo, D. L. Lu, and Y. Yang. 2014. Chemical-free extraction of cotton stalk bark fibers by steam flash explosion. BioResources 9 (4):6950–67. doi:10.15376/BIORES.9.4.6950-6967.
  • Ilyas, R. A., M. Y. M. Zuhri, H. A. Aisyah, M. R. M. Asyraf, S. A. Hassan, E. S. Zainudin, S. M. Sapuan, S. Sharma, S. P. Bangar, R. Jumaidin, et al. 2022. Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers 14 (1):202. doi:10.3390/polym14010202.
  • Lan, X., S. Chai, J. A. Coulter, H. Cheng, L. Chang, C. Huang, R. Li, Y. Chai, Y. Li, J. Ma, et al. 2020. Maize straw strip mulching as a replacement for plastic film mulching in maize production in a semiarid region. Sustainability 12 (15):6273. doi:10.3390/su12156273.
  • Li, W., L. Zheng, D. Teng, D. Ge, F. I. Farha, and F. Xu. 2022. Interfacial modified unidirectional wheat straw/polylactic acid composites. Journal of Industrial Textiles 51 (1_suppl):272S–84. doi:10.1177/1528083720918172.
  • Liu, Z. Y., Y. X. Weng, Z. G. Huang, Y. J. Jin, J. Hu, D. Chou, and S. X. Shao. 2019. Manufacture of a hydrophobic CaO/polylactic acid composite. Materials and Manufacturing Processes 34 (3):303–11. doi:10.1080/10426914.2018.1512113.
  • Mahmud, S., K. M. F. Hasan, M. A. Jahid, K. Mohiuddin, R. Zhang, and J. Zhu. 2021. Comprehensive review on plant fiber-reinforced polymeric biocomposites. Journal of Materials Science 56 (12):7231–64. doi:10.1007/s10853-021-05774-9.
  • Mayilswamy, N., and B. Kandasubramanian. 2022. Green composites prepared from soy protein, polylactic acid (PLA), starch, cellulose, chitin: A review. Emergent Materials 5 (3):727–53. doi:10.1007/s42247-022-00354-2.
  • Poonia, N., V. Kadam, N. M. Rose, S. Yadav, and N. Shanmugam. 2022. Effect of fiber chemical treatments on rice straw fiber reinforced composite properties. Journal of Natural Fibers 19 (16):14044–54. doi:10.1080/15440478.2022.2114979.
  • Rajeshkumar, G., S. Arvindh Seshadri, G. L. Devnani, M. R. Sanjay, S. Siengchin, J. Prakash Maran, N. A. Al-Dhabi, P. Karuppiah, V. A. Mariadhas, N. Sivarajasekar, et al. 2021. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – a comprehensive review. Journal of Cleaner Production 310:127483. doi:10.1016/j.jclepro.2021.127483.
  • Ramasubbu, R., and S. Madasamy. 2022. Fabrication of automobile component using hybrid natural fiber reinforced polymer composite. Journal of Natural Fibers 19 (2):736–46. doi:10.1080/15440478.2020.1761927.
  • Reddy, K. H., R. M. Reddy, M. Ramesh, D. Mohana Krishnudu, B. M. Reddy, and H. R. Rao. 2019. Impact of alkali treatment on characterization of tapsi (sterculia urens) natural bark fiber reinforced polymer composites. Journal of Natural Fibers 18 (3):378–89. doi:10.1080/15440478.2019.1623747.
  • Reddy, P. V., D. Mohana Krishnudu, P. Rajendra Prasad, and V. S. R. R. 2019. A study on alkali treatment influence on prosopis juliflora fiber-reinforced epoxy composites. Journal of Natural Fibers 18 (8):1094–106. doi:10.1080/15440478.2019.1687063.
  • Sam-Brew, S., and G. D. Smith. 2017. Flax shive and hemp hurd residues as alternative raw material for particleboard production. BioResources 12 (3):5715–35. doi:10.15376/biores.12.3.5715-5735.
  • Sun, E., G. Liao, Q. Zhang, P. Qu, G. Wu, and H. Huang. 2019. Biodegradable copolymer-based composites made from straw fiber for biocomposite flowerpots application. Composites Part B: Engineering 165:193–98. doi:10.1016/j.compositesb.2018.11.121.
  • Sun, M., X. Xu, C. Wang, Y. Bai, C. Fu, L. Zhang, R. Fu, and Y. Wang. 2020. Environmental burdens of the comprehensive utilization of straw: Wheat straw utilization from a life-cycle perspective. Journal of Cleaner Production 259:120702. doi:10.1016/j.jclepro.2020.120702.
  • Sun, Z., and M. Wu. 2019. Effects of sol-gel modification on the interfacial and mechanical properties of sisal fiber reinforced polypropylene composites. Industrial Crops and Products 137:89–97. doi:10.1016/j.indcrop.2019.05.021.
  • Yang, Z., W. Song, Y. Cao, C. Wang, X. Hu, Y. Yang, and S. Zhang. 2017. The effect of laccase pretreatment conditions on the mechanical properties of binderless fiberboards with wheat straw. BioResources 12 (2):3707–19. doi:10.15376/biores.12.2.3707-3719.
  • Zhang, X., B. Gao, S. Zhao, P. Wu, L. Han, and X. Liu. 2020. Optimization of a “coal-like” pelletization technique based on the sustainable biomass fuel of hydrothermal carbonization of wheat straw. Journal of Cleaner Production 242:118426. doi:10.1016/j.jclepro.2019.118426.
  • Zulkifli, M., M. S. Hossain, N. A. Khalil, A. N. Ahmad Yahaya, F. A. M. Yusof, and A. S. Hashim. 2018. Preparation and characterization of sol-gel silica-modified kenaf bast microfiber/polypropylene composites. BioResources 13 (1):1977–92. doi:10.15376/biores.13.1.1977-1992.
  • Zuo, Y., K. Chen, P. Li, X. He, W. Li, and Y. Wu. 2020. Effect of nano-SiO2 on the compatibility interface and properties of polylactic acid-grafted-bamboo fiber/polylactic acid composite. International Journal of Biological Macromolecules 157:177–86. doi:10.1016/j.ijbiomac.2020.04.205.