841
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Preparation of Chitin Nanofibers from Shrimp Shell Waste by Partial Deacetylation and Mechanical Treatment

, &

References

  • Abdou, E. S., K. S. A. Nagy, and M. Z. Elsabee. 2008. Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology 99 (5):1359–13. doi:10.1016/j.biortech.2007.01.051.
  • Acosta, N., C. Jiménez, V. Borau, and A. Heras. 1993. Extraction and characterization of chitin from crustaceans. Biomass and Bioenergy 5 (2):145–53. doi:10.1016/0961-9534(93)90096-M.
  • Bamba, Y., Y. Ogawa, T. Saito, L. A. Berglund, and A. Isogai. 2017. Estimating the strength of single chitin nanofibrils via sonication-induced fragmentation. Biomacromolecules 18 (12):4405–10. doi:10.1021/acs.biomac.7b01467.
  • Biswas, S. K., M. I. Shams, A. K. Das, M. N. Islam, and M. M. Nazhad. 2015. Flexible and transparent chitin/acrylic nanocomposite films with high mechanical strength. Fibers and Polymers 16 (4):774–81. doi:10.1007/s12221-015-0774-6.
  • Chang, S.-H., H.-T. V. Lin, G.-J. Wu, and G. J. Tsai. 2015. pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydrate Polymers 134:74–81. doi:10.1016/j.carbpol.2015.07.072.
  • Deng, Q., J. Li, J. Yang, and D. Li. 2014. Optical and flexible α-chitin nanofibers reinforced poly(vinyl alcohol) (PVA) composite film: Fabrication and property. Composites Part A, Applied Science and Manufacturing 67:55–60. doi:10.1016/j.compositesa.2014.08.013.
  • Dhanabalan, V., K. A. M. Xavier, S. Eppen, A. Joy, A. Balange, K. K. Asha, L. N. Murthy, and B. B. Nayak. 2021. Characterization of chitin extracted from enzymatically deproteinized Acetes shell residue with varying degree of hydrolysis. Carbohydrate Polymers 253:117203. doi:10.1016/j.carbpol.2020.117203.
  • Dumont, M., R. Villet, M. Guirand, A. Montembault, T. Delair, S. Lack, M. Barikosky, A. Crepet, P. Alcouffe, F. Laurent, et al. 2018. Processing and antibacterial properties of chitosan-coated alginate fibers. Carbohydrate Polymers 190:31–42. doi:10.1016/j.carbpol.2017.11.088.
  • Elieh-Ali-Komi, D., and M. Hamblin. 2016. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. International Journal of Advanced Research 4 (3):411–27.
  • Fan, Y., T. Saito, and A. Isogai. 2008a. Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules 9 (1):192–98. doi:10.1021/bm700966g.
  • Fan, Y., T. Saito, and A. Isogai. 2008b. Preparation of chitin nanofibers from squid pen β-chitin by simple mechanical treatment under acid conditions. Biomacromolecules 9 (7):1919–23. doi:10.1021/bm800178b.
  • Fan, Y., T. Saito, and A. Isogai. 2010. Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohydrate Polymers 79 (4):1046–51. doi:10.1016/j.carbpol.2009.10.044.
  • Gao, R., Y. Lu, S. Xiao, and J. Li. 2017. Facile fabrication of nanofibrillated chitin/Ag2O heterostructured aerogels with high iodine capture efficiency. Scientific Reports 7 (1). doi:10.1038/s41598-017-04436-8.
  • Haider, M. M., G. Jian, H. Li, M. Wolcott, C. Fernandez, and S. Nassiri. 2022. Impact of chitin nanofibers and nanocrystals from waste shrimp shells on mechanical properties, setting time, and late-age hydration of mortar. Scientific Reports 12 (1):20539. doi:10.1038/s41598-022-24366-4.
  • Hejazi, M., T. Behzad, P. Heidarian, and B. Nasri-Nasrabadi. 2018. A study of the effects of acid, plasticizer, cross-linker, and extracted chitin nanofibers on the properties of chitosan biofilm. Composites Part A: Applied Science and Manufacturing 109:221–31. doi:10.1016/j.compositesa.2018.02.038.
  • Ifuku, S., M. Nogi, K. Abe, M. Yoshioka, M. Morimoto, H. Saimoto, and H. Yano. 2009. Preparation of chitin nanofibers with a uniform width as alpha-chitin from crab shells. Biomacromolecules 10 (6):1584–88. doi:10.1021/bm900163d.
  • Ifuku, S., M. Nogi, K. Abe, M. Yoshioka, M. Morimoto, H. Saimoto, and H. Yano. 2011. Simple preparation method of chitin nanofibers with a uniform width of 10–20 nm from prawn shell under neutral conditions. Carbohydrate Polymers 84 (2):762–64. doi:10.1016/j.carbpol.2010.04.039.
  • Ifuku, S., M. Nogi, M. Yoshioka, M. Morimoto, H. Yano, and H. Saimoto. 2010. Fibrillation of dried chitin into 10–20 nm nanofibers by a simple grinding method under acidic conditions. Carbohydrate Polymers 81 (1):134–39. doi:10.1016/j.carbpol.2010.02.006.
  • Ji, Y., S. Waters, E. Lim, A. W. Lang, P. N. Ciesielski, M. L. Shofner, J. R. Reynolds, and J. C. Meredith. 2022. Minimizing oxygen permeability in chitin/cellulose nanomaterial coatings by tuning chitin deacetylation. ACS Sustainable Chemistry & Engineering 10 (1):124–33. doi:10.1021/acssuschemeng.1c05051.
  • Kumari, S., and P. K. Rath. 2014. Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales. Procedia Materials Science 6:482–89. doi:10.1016/j.mspro.2014.07.062.
  • Lin, Y.-S., S.-H. Liang, W.-L. Lai, J.-X. Lee, Y.-P. Wang, Y.-T. Liu, S.-H. Wang, and M.-H. Lee. 2021. Sustainable extraction of chitin from spent pupal shell of black soldier fly. Processes 9 (6):976. doi:10.3390/pr9060976.
  • Liu, C., G. Wang, W. Sui, L. An, and C. Si. 2017. Preparation and characterization of chitosan by a novel deacetylation approach using glycerol as green reaction solvent. ACS Sustainable Chemistry & Engineering 5 (6):4690–98. doi:10.1021/acssuschemeng.7b00050.
  • Li, J., Y. Wu, and L. Zhao. 2016. Antibacterial activity and mechanism of chitosan with ultra high molecular weight. Carbohydrate Polymers 148:200–05. doi:10.1016/j.carbpol.2016.04.025.
  • Mat Zin, M. I., D. N. Jimat, and W. M. F. Wan Nawawi. 2022. Physicochemical properties of fungal chitin nanopaper from shiitake (L. edodes), enoki (F. velutipes) and oyster mushrooms (P. ostreatus). Carbohydrate Polymers 281:119038. doi:10.1016/j.carbpol.2021.119038.
  • Mohan, K., A. R. Ganesan, P. N. Ezhilarasi, K. K. Kondamareddy, D. K. Rajan, P. Sathishkumar, J. Rajarajeswaran, and L. Conterno. 2022. Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydrate Polymers 287:119349. doi:10.1016/j.carbpol.2022.119349.
  • Ogawa, Y., R. Hori, U.-J. Kim, and M. Wada. 2011. Elastic modulus in the crystalline region and the thermal expansion coefficients of α-chitin determined using synchrotron radiated X-ray diffraction. Carbohydrate Polymers 83 (3):1213–17. doi:10.1016/j.carbpol.2010.09.025.
  • Osada, M., C. Miura, Y. S. Nakagawa, M. Kaihara, M. Nikaido, and K. Totani. 2015. Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation. Carbohydrate Polymers 134:718–25. doi:10.1016/j.carbpol.2015.08.066.
  • Ottey, M. H., K. M. Vårum, and O. Smidsrød. 1996. Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydrate Polymers 29 (1):17–24. doi:10.1016/0144-8617(95)00154-9.
  • Paulino, A. T., J. I. Simionato, J. C. Garcia, and J. Nozaki. 2006. Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate Polymers 64 (1):98–103. doi:10.1016/j.carbpol.2005.10.032.
  • Pereira, A. G. B., E. C. Muniz, and Y.-L. Hsieh. 2014. Chitosan-sheath and chitin-core nanowhiskers. Carbohydrate Polymers 107:158–66. doi:10.1016/j.carbpol.2014.02.046.
  • Salehinik, F., T. Behzad, A. Zamani, and B. Bahrami. 2021. Extraction and characterization of fungal chitin nanofibers from Mucor indicus cultured in optimized medium conditions. International Journal of Biological Macromolecules 167:1126–34. doi:10.1016/j.ijbiomac.2020.11.066.
  • Satam, C. C., and J. C. Meredith. 2021. Increasing efficiency of the homogenization process for production of chitin nanofibers for barrier film applications. Carbohydrate Polymers 274:118658. doi:10.1016/j.carbpol.2021.118658.
  • Sebestyén, Z., E. Jakab, A. Domán, P. Bokrossy, I. Bertóti, J. Madarász, and K. László. 2020. Thermal degradation of crab shell biomass, a nitrogen-containing carbon precursor. Journal of Thermal Analysis and Calorimetry 142 (1):301–08. doi:10.1007/s10973-020-09438-9.
  • Svensson, S. E., A. O. Oliveira, K. H. Adolfsson, I. Heinmaa, A. Root, N. Kondori, J. A. Ferreira, M. Hakkarainen, and A. Zamani. 2022. Turning food waste to antibacterial and biocompatible fungal chitin/chitosan monofilaments. International Journal of Biological Macromolecules 209:618–30. doi:10.1016/j.ijbiomac.2022.04.031.
  • Tanpichai, S., Y. Srimarut, W. Woraprayote, and Y. Malila. 2022. Chitosan coating for the preparation of multilayer coated paper for food-contact packaging: Wettability, mechanical properties, and overall migration. International Journal of Biological Macromolecules 213:534–45. doi:10.1016/j.ijbiomac.2022.05.193.
  • Tanpichai, S., S. Witayakran, J. Wootthikanokkhan, Y. Srimarut, W. Woraprayote, and Y. Malila. 2020. Mechanical and antibacterial properties of the chitosan coated cellulose paper for packaging applications: Effects of molecular weight types and concentrations of chitosan. International Journal of Biological Macromolecules 155:1510–19. doi:10.1016/j.ijbiomac.2019.11.128.
  • Tapanya, T., and N. Udomkit. 2016. The analysis of Thai shrimp supply chain and competitiveness in the U.S. market. MFU Connexion: Journal of Humanities and Social Sciences 6 (1):20–52.
  • Tsai, W.-C., S.-T. Wang, K.-L. B. Chang, and M.-L. Tsai. 2019. Enhancing saltiness perception using chitin nanomaterials. Polymers 11 (4):719. doi:10.3390/polym11040719.
  • Vårum, K. M., M. W. Anthonsen, H. Grasdalen, and O. Smidsrød. 1991. 13C-n.m.r. studies of the acetylation sequences in partially N-deacetylated chitins (chitosans). Carbohydrate Polymers 217:19–27. doi:10.1016/0008-6215(91)84113-S.
  • Wang, J., K. Kasuya, H. Koga, M. Nogi, and K. Uetani. 2021. Thermal conductivity analysis of chitin and deacetylated-chitin nanofiber films under dry conditions. Nanomaterials 11 (3):658. doi:10.3390/nano11030658.
  • Wijesena, R. N., N. D. Tissera, V. W. S. G. Rathnayaka, R. M. de Silvade Silva, and K. M. N. de Silvade Silva. 2020. Colloidal stability of chitin nanofibers in aqueous systems: Effect of pH, ionic strength, temperature & concentration. Carbohydrate Polymers 235:116024. doi:10.1016/j.carbpol.2020.116024.
  • Wu, Q., N. E. Mushi, and L. A. Berglund. 2020. High-strength nanostructured films based on well-preserved α-chitin nanofibrils disintegrated from insect cuticles. Biomacromolecules 21 (2):604–12. doi:10.1021/acs.biomac.9b01342.
  • Wu, J., K. Zhang, N. Girouard, and J. C. Meredith. 2014. Facile route to produce chitin nanofibers as precursors for flexible and transparent gas barrier materials. Biomacromolecules 15 (12):4614–20. doi:10.1021/bm501416q.
  • Xu, J., L. Liu, J. Yu, Y. Zou, Z. Wang, and Y. Fan. 2019. DDA (degree of deacetylation) and Ph-dependent antibacterial properties of chitin nanofibers against Escherichia coli. Cellulose 26 (4):2279–90. doi:10.1007/s10570-019-02287-2.
  • Xu, H., L. Zhang, H. Zhang, J. Luo, and X. Gao. 2021. Green fabrication of chitin/Chitosan composite hydrogels and their potential applications. Macromolecular Bioscience 21 (3):2000389. doi:10.1002/mabi.202000389.
  • Yan, N., and X. Chen. 2015. Sustainability: Don’t waste seafood waste. Nature 524 (7564):155–57. doi:10.1038/524155a.