2,402
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development and Characterization of Sustainable Bioplastic Films Using Cellulose Extracted from Prosopis juliflora

, , , , , , ORCID Icon, , & show all

References

  • Abdullah, A. H. D., P. Sri, K. Myrtha, D. P. Oceu, and H. F. Rani. 2018. Fabrication and characterization of sweet potato starch-based bioplastics plasticized with glycerol. Journal of Biological Sciences 19 (1):57–17. doi:10.3923/jbs.2019.57.64.
  • Abidin, M. Z. A. Z., N. M. Julkapli, H. Juahir, F. Azaman, N. H. Sulaiman, and I. Z. Abidin. 2015. Fabrication and properties of chitosan with starch for packaging application. Malaysian Journal of Analytical Sciences 19:1032–42.
  • Amin, M. R. M. A. C., M. A. Chowdhury, and M. A. Kowser. 2019. Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon 5 (8):e02009. doi:10.1016/j.heliyon.2019.e02009.
  • Asgher, M. S. A. Q., M. Bilal, and H. M. N. Iqbal. 2020. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Research International 137:109625. doi:10.1016/j.foodres.2020.109625.
  • Azmin, S. N. H. M., and M. S. M. Nor. 2020. Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. Journal of Bioresources and Bioproducts 5 (4):248–55. doi:10.1016/j.jobab.2020.10.003.
  • Batista Meneses, D., G. Montes de Oca-Vásquez, J. R. Vega-Baudrit, M. Rojas-Álvarez, J. Corrales-Castillo, and L. C. Murillo-Araya. 2022. Pretreatment methods of lignocellulosic wastes into value-added products: Recent advances and possibilities. Biomass Conversion and Biorefinery 12:547–64. doi:10.1007/s13399-020-00722-0.
  • Behera, L., M. Mohanta, and A. Thirugnanam. 2022. Intensification of yam-starch based biodegradable bioplastic film with bentonite for food packaging application. Environmental Technology & Innovation 25:102180. doi:10.1016/j.eti.2021.102180.
  • Ceseracciu, L., J. A. Heredia-Guerrero, S. Dante, A. Athanassiou, and I. S. Bayer. 2015. Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS). ACS Applied Materials & Interfaces 7 (6):3742–53. doi:10.1021/am508515z.
  • Chopra, L. 2022. Extraction of cellulosic fibers from the natural resources: A short review. Materials Today: Proceedings 48:1265–70. doi:10.1016/j.matpr.2021.08.267.
  • Cifriadi, A., T. Panji, N. A. Wibowo, and K. Syamsu. 2017. Bioplastic production from cellulose of oil palm empty fruit bunch. IOP Conference Series: Earth and Environmental Sciences 65 (1):012011. doi:10.1088/1755-1315/65/1/012011.
  • Debiagi, F., P. C. S. Faria-Tischer, and S. Mali. 2020. Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion. Cellulose 27 (4):1975–88. doi:10.1007/s10570-019-02893-0.
  • Debiagi, F., P. C. S. Faria-Tischer, and S. Mali. 2021. A green approach based on reactive extrusion to produce nanofibrillated cellulose from Oat Hull. Waste and Biomass Valorization 12 (2):1051–60. doi:10.1007/s12649-020-01025-1.
  • Edhirej, A., S. M. Sapuan, M. Jawaid, and N. I. Zahari. 2017a. Cassava/Sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. International Journal of Biological Macromolecules 101:75–83. doi:10.1016/j.ijbiomac.2017.03.045.
  • Edhirej, A., S. M. Sapuan, M. Jawaid, and N. I. Zahari. 2017b. Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch. Fibers and Polymers 18 (1):162–71. doi:10.1007/s12221-017-6251-7.
  • Edrisi, S. A., A. El-Keblawy, and P. C. Abhilash. 2020. Sustainability analysis of Prosopis juliflora (Sw.) DC based restoration of degraded land in North India. Land 9 (2):59. doi:10.3390/land9020059.
  • Ghanbarzadeh, B., H. Almasi, and A. A. Entezami. 2011. Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Industrial Crops and Products 33 (1):229–35. doi:10.1016/j.indcrop.2010.10.016.
  • Harini, K., K. Ramya, and M. Sukumar. 2018. Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose. Carbohydrate Polymers 201:329–39. doi:10.1016/j.carbpol.2018.08.081.
  • Hu, F., J. Zeng, Z. Cheng, X. Wang, B. Wang, Z. Zeng, and K. Chen. 2021. Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper. Carbohydrate Polymers 254:117474. doi:10.1016/j.carbpol.2020.117474.
  • Jabeen, N., I. Majid, G. A. Nayik, and F. Yildiz. 2015. Bioplastics and food packaging: A review. Cogent Food & Agriculture 1 (1):1117749. doi:10.1080/23311932.2015.1117749.
  • Jiugao, Y., W. Ning, and M. Xiaofei. 2005. The Effects of citric acid on the properties of thermoplastic starch plasticized by glycerol. Starch - Stärke 57 (10):494–504. doi:10.1002/star.200500423.
  • Kim, H. Y., J. Jane, and B. Lamsal. 2017. Hydroxypropylation improves film properties of high amylose corn starch. Industrial Crops and Products 95:175–83. doi:10.1016/j.indcrop.2016.10.025.
  • Kumar, B., S. Patel, N. K. Mishra, and R. K. Naik. 2007. Assessment of some physical and mechanical properties of different flexible packaging films for packaging of tamarind (Tamarindus indica L.) Pulp Briquettes. Trends in Biosciences 10 (21):4180–83.
  • Liu, Y., S. Ahmed, D. E. Sameen, Y. Wang, R. Lu, J. Dai, S. Li, and W. Qin. 2021. A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology 112:532–46. doi:10.1016/j.tifs.2021.04.016.
  • Luchese, C. L., T. Garrido, J. C. Spada, I. C. Tessaro, and K. de la Caba. 2018. Development and characterization of cassava starch films incorporated with blueberry pomace. International Journal of Biological Macromolecules 106:834–39. doi:10.1016/j.ijbiomac.2017.08.083.
  • Madhu, P., S. Pradeep, M. R. Sanjay, and S. Siengchin. 2019. Characterization of raw and alkali treated Prosopis juliflora fibers for potential polymer composite reinforcement. IOP Conference Series: Materials Science & Engineering 653 (1):012016. doi:10.1088/1757-899X/653/1/012016.
  • Marichelvam, M. K., M. Jawaid, and M. Asim. 2019. Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers 7 (4):32. doi:10.3390/fib7040032.
  • Marichelvam, M. K., P. Manimaran, M. R. Sanjay, S. Siengchin, M. Geetha, K. Kandakodeeswaran, P. Boonyasopon, and S. Gorbatyuk. 2022. Extraction and development of starch-based bioplastics from Prosopis Juliflora Plant: Eco-friendly and sustainability aspects. Current Research in Green and Sustainable Chemistry 5:100296. doi:10.1016/j.crgsc.2022.100296.
  • Menezes, D. B., F. M. Diz, L. F. Romanholo Ferreira, Y. Corrales, J. R. Baudrit, L. P. Costa, and M. L. Hernández-Macedo. 2021. Starch-based biocomposite membrane reinforced by orange bagasse cellulose nanofibers extracted from ionic liquid treatment. Cellulose 28 (7):4137–49. doi:10.1007/s10570-021-03814-w.
  • Mostafa, N. A., A. A. Farag, H. M. Abo-Dief, and A. M. Tayeb. 2018. Production of biodegradable plastic from agricultural wastes. Arabian Journal Chemistry 11 (4):546–53. doi:10.1016/j.arabjc.2015.04.008.
  • Muscat, D., B. Adhikari, R. Adhikari, and D. S. Chaudhary. 2012. Comparative study of film forming behaviour of low and high amylose starches using glycerol and xylitol as plasticizers. Journal of Food Engineering 109 (2):189–201. doi:10.1016/j.jfoodeng.2011.10.019.
  • Oleyaei, S. A., Y. Zahedi, B. Ghanbarzadeh, and A. A. Moayedi. 2016. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. International Journal of Biological Macromolecules 89:256–64. doi:10.1016/j.ijbiomac.2016.04.078.
  • Peelman, N., P. Ragaert, K. Ragaert, B. de Meulenaer, F. Devlieghere, and L. Cardon. 2015. Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, PLA, and PHA. Journal of Applied Polymer Science 132:42305. doi:10.1002/app.42305.
  • Podshivalov, A., M. Zakharova, E. Glazacheva, and M. Uspenskaya. 2017. Gelatin/Potato starch edible biocomposite films: Correlation between morphology and physical properties. Carbohydrate Polymers 157:1162–72. doi:10.1016/j.carbpol.2016.10.079.
  • Prabha, D. S., H. U. Dahms, and P. Malliga. 2014. Pharmacological potentials of phenolic compounds from Prosopis spp.–a review. Journal of Coastal Life Medicine 2 (11):918–24.
  • Qin, Y., W. Wang, H. Zhang, Y. Dai, H. Hou, and H. Dong. 2019. Effects of citric acid on structures and properties of thermoplastic hydroxypropyl amylomaize starch films. Materials 12 (9):1565. doi:10.3390/ma12091565.
  • Ravindran, L., M. S. Sreekala, and S. Thomas. 2019. Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships. International Journal of Biological Macromolecules 131:858–70. doi:10.1016/j.ijbiomac.2019.03.134.
  • Rodrigues, S. C. S., A. D. da Silva, L. H. de Carvalho, T. S. Alves, and R. Barbosa. 2020. Morphological, structural, thermal properties of a native starch obtained from babassu mesocarp for food packaging application. Journal of Materials Research and Technology 9 (6):15670–78. doi:10.1016/j.jmrt.2020.11.030.
  • Rohmawati, B., F. Atikah Nata Sya’idah, R. Rhismayanti, D. Alighiri, and W. Tirza Eden. 2018. Synthesis of bioplastic-based renewable cellulose acetate from teak wood (tectona grandis) biowaste using glycerol-chitosan plasticizer. Oriental Journal of Chemistry 34 (4):1810–16. doi:10.13005/ojc/3404014.
  • Salarbashi, D., S. Tajik, M. Ghasemlou, S. Shojaee-Aliabadi, M. Shahidi Noghabi, and R. Khaksar. 2013. Characterization of soluble soybean polysaccharide film incorporated essential oil intended for food packaging. Carbohydrate Polymers 98 (1):1127–36. doi:10.1016/j.carbpol.2013.07.031.
  • Sapei, L., K. S. Padmawijaya, O. Sijayanti, and P. J. Wardhana. 2015. The effect of banana starch concentration on the properties of chitosan-starch bioplastics. Journal of Chemical and Pharmaceutical Research 7 (9S):101–05.
  • Shanmathy, M., M. Mohanta, and A. Thirugnanam. 2021. Development of biodegradable bioplastic films from Taro starch reinforced with bentonite. Carbohydrate Polymer Technologies and Applications 2:100173. doi:10.1016/j.carpta.2021.100173.
  • Siracusa, V., P. Rocculi, S. Romani, and M. D. Rosa. 2008. Biodegradable polymers for food packaging: A review. Trends in Food Science & Technology 19 (12):634–43. doi:10.1016/j.tifs.2008.07.003.
  • Song, X., G. Zuo, and F. Chen. 2018. Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. International Journal of Biological Macromolecules 107:1302–09. doi:10.1016/j.ijbiomac.2017.09.114.
  • Suryanto, H., A. S. Pahlevi, and U. Yanuhar. 2021. Effect of bacterial cellulose reinforcement on morphology and tensile properties of starch-based biocomposite. IOP Conference Series: Materials Science & Engineering 1034 (1):012167. doi:10.1088/1757-899X/1034/1/012167.
  • Tang, Y., X. Zhang, R. Zhao, D. Guo, and J. Zhang. 2018. Preparation and properties of chitosan/guar gum/nanocrystalline cellulose nanocomposite films. Carbohydrate Polymers 197:128–36. doi:10.1016/j.carbpol.2018.05.073.
  • Tedeschi, G., S. Guzman-Puyol, U. C. Paul, M. J. Barthel, L. Goldoni, G. Caputo, L. Ceseracciu, A. Athanassiou, and J. A. Heredia-Guerrero. 2018. Thermoplastic cellulose acetate oleate films with high barrier properties and ductile behaviour. Chemical Engineering Journal 348:840–49. doi:10.1016/j.cej.2018.05.031.
  • Valencia, L., V. Arumughan, B. Jalvo, H. J. Maria, S. Thomas, and A. P. Mathew. 2019. Nanolignocellulose extracted from environmentally undesired Prosopis juliflora. ACS Omega 4 (2):4330–38. doi:10.1021/acsomega.8b02685.
  • Wahyuningtiyas, N. E., and H. Suryanto. 2018. Properties of cassava starch based bioplastic reinforced by nanoclay. Journal of Mechanical Engineering Science and Technology 2 (1):20–26. doi:10.17977/um016v2i12018p020.
  • Wang, W., F. Gu, Z. Deng, Y. Zhu, J. Zhu, T. Guo, J. Song, and H. Xiao. 2021. Multilayer surface construction for enhancing barrier properties of cellulose-based packaging. Carbohydrate Polymers 255:117431. doi:10.1016/j.carbpol.2020.117431.
  • Woggum, T., P. Sirivongpaisal, and T. Wittaya. 2014. Properties and characteristics of dual-modified rice starch based biodegradable films. International Journal of Biological Macromolecules 67:490–502. doi:10.1016/j.ijbiomac.2014.03.029.
  • Yang, J., X. Dong, J. Wang, Y. C. Ching, J. Liu, C. Li, Y. Baikeli, Z. Li, N. Mohammed Al-Hada, and S. Xu. 2022. Synthesis and properties of bioplastics from corn starch and citric acid-epoxidized soybean oil oligomers. Journal of Materials Research and Technology 20:373–80. doi:10.1016/j.jmrt.2022.07.119.
  • Yaradoddi, J. S., N. R. Banapurmath, S. V. Ganachari, M. E. M. Soudagar, N. M. Mubarak, S. Hallad, S. Hugar, and H. Fayaz. 2020. Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Scientific Reports 10 (1):21960. doi:10.1038/s41598-020-78912-z.
  • Zakaria, N. H., N. Muhammad, A. V. Sandu, and M. M. A. B. Abdullah. 2018. Effect of mixing temperature on characteristics of thermoplastic potato starch film. IOP Conference Series: Materials Science & Engineering 374 (1):012083. doi:10.1088/1757-899X/374/1/012083.
  • Zhang, R., X. Wang, and M. Cheng. 2018. Preparation and characterization of potato starch film with various size of nano-SiO2. Polymers 10 (10):1172. doi:10.3390/polym10101172.