886
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Physical and Mechanical Properties of Rice Straw Particles and Furcraea foetida Fiber Reinforced Hybrid Composite

, &

References

  • Abhishek, S. M., D. Doreswamy, S. Maddasani, M. Shettar, and R. Shetty. 2022. Processing, characterization of Furcraea Foetida (FF) fiber and investigation of physical/mechanical properties of FF/Epoxy composite. Polym. 14, 1476.
  • Agirgan, M., A. O. Agirgan, and V. Taskin. 2022. Investigation of thermal conductivity and sound absorption properties of rice straw fiber/polylactic acid biocomposite material. Journal of Natural Fibers 19 (16):15071–17. doi:10.1080/15440478.2022.2070323.
  • Alabi, O. A., K. I. Ologbonjaye, O. Awosolu, and O. E. Alalade. 2019. Public and environmental health effects of plastic wastes disposal: A review. Journal of Toxicology and Risk Assessment 5 (2):1–13. doi:10.23937/2572-4061.1510021.
  • Alshgari, R. A., K. Sargunan, C. Kumar, M. V. Vinayagam, J. Madhusudhanan, S. Sivakumar, S. M. Wabaidur, M. A. Islam, G. Ramasubramanian, and R. Prasad. 2022. Effect of fiber mixing and nanoclay on the mechanical properties of biodegradable natural fiber-based nanocomposites. Journal of Nanomaterials 22 (9):1–7. doi:10.1155/2022/4994658.
  • Arbelaiz, A., B. Fernandez, G. Cantero, R. Llano-Ponte, A. Valea, and I. Mondragon. 2005. Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Composites Part A, Applied Science and Manufacturing 36 (12):1637–44. doi:10.1016/j.compositesa.2005.03.021.
  • Arpitha, G. R. B. Y., and B. Yogesha. 2017. An overview on mechanical property evaluation of natural fiber reinforced polymers. Materials Today: Proceedings 4 (2):2755–60. doi:10.1016/j.matpr.2017.02.153.
  • Athijayamani, A., M. Thiruchitrambalam, U. Natarajan, and B. Pazhanivel. 2009. Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite. Materials Science & Engineering 517 (1–2):344–53. doi:10.1016/j.msea.2009.04.027.
  • Azlina, N., M. Jawaid, E. Syams, and S. K. A. Yamani. 2019. Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites. Journal of Materials Research and Technology 8 (4):3466–74. doi:10.1016/j.jmrt.2019.06.016.
  • Bachmann, J., M. Wiedemann, and P. Wierach. 2018. Flexural mechanical properties of hybrid epoxy composites reinforced with nonwoven made of flax fibres and recycled carbon fibres. Aerospace 5 (4):107. doi:10.3390/aerospace5040107.
  • Bekele, A. E., H. G. Lemu, and M. G. Jiru. 2022. Exploration of mechanical properties of enset–sisal hybrid polymer composite. Fibers 10 (2):14. doi:10.3390/fib10020014.
  • Chowdari, G. K., D. K. Prasad, and S. B. R. Devireddy. 2020. Physical and thermal behaviour of areca and coconut shell powder reinforced epoxy composites. Materials Today: Proceedings 26:1402–05. doi:10.1016/j.matpr.2020.02.282.
  • de Lima, T. E., A. R. de Azevedo, M. T. Marvila, V. S. Candido, R. Fediuk, and S. N. Monteiro. 2022. Potential of using amazon natural fibers to reinforce cementitious composites: A review. Polymers 14 (3):647. doi:10.3390/polym14030647.
  • Fiore, V., A. Valenza, and G. Di Bella. 2012. Mechanical behavior of carbon/flax hybrid composites for structural applications. Journal of Composite Materials 46 (17):2089–96. doi:10.1177/0021998311429884.
  • Fu, S. Y., X. Q. Feng, B. Lauke, and Y. W. Mai. 2008. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering 39 (6):933–61. doi:10.1016/j.compositesb.2008.01.002.
  • Girimurugan, R., K. G. Saravanan, P. Manickavasagam, G. Gurunathan, and M. Vairavel. 2021. Experimental studies on water absorption behaviour of treated and untreated hybrid bio-composites. IOP Conference Series: Materials Science & Engineering 1059 (1):012017. doi:10.1088/1757-899X/1059/1/012017.
  • Gokul, K., T. R. Prabhu, and T. Rajasekaran. 2017. Processing and evaluation of mechanical properties of sugarcane fiber reinforced natural composites. Transactions of the Indian Institute of Metals 70 (10):2537–46. doi:10.1007/s12666-017-1116-8.
  • Jagadeesh, P., V. S. H. Ningappa, M. Puttegowda, Y. G. T. Girijappa, S. M. Rangappa, M. R. Khan, I. Khan, and S. Siengchin. 2021. Pongamia pinnata shell powder filled sisal/kevlar hybrid composites: Physicomechanical and morphological characteristics. Polymer Composites 42 (9):4434–47. doi:10.1002/pc.26160.
  • Jani, S. P., A. S. Kumar, M. A. Khan, S. Sajith, and A. Saravanan. 2021. Influence of natural filler on mechanical properties of hemp/kevlar hybrid green composite and analysis of change in material behavior using acoustic emission. Journal of Natural Fibers 18 (11):1580–91. doi:10.1080/15440478.2019.1692321.
  • Joseph, S., M. S. Sreekala, P. Koshy, and S. Thomas. 2008. Mechanical properties and water sorption behavior of phenol–formaldehyde hybrid composites reinforced with banana fiber and glass fiber. Journal of Applied Polymer Science 109 (3):1439–46. doi:10.1002/app.27425.
  • Joshi, R., K. B. Pramendra, and M. Samrat. 2022. Processing and performance evaluation of agro wastes reinforced bio-based epoxy hybrid composites. Proceedings of the Institution of Mechanical Engineers, Part L Journal Materials and Design Applications 22 (9):1–18.
  • Kaatubi, K. M., R. R. Meenakshi, and J. Gnanasundar, B. Ramesh, R. Rajendran, D. Joseph Manuel, S. Mohammed, H. S. Asiful, E. M. Anbese, R. Prasad. 2022. Investigate the mechanical properties of soybean oil reinforced with ATH-Filled polyester-based hybrid nanocomposites. Journal of Nanomaterials 22 (11):1–7. doi:10.1155/2022/9509702.
  • Khalid, M. Y., Z. U. Arif, M. F. Sheikh, and M. A. Nasir. 2021. Mechanical characterization of glass and jute fiber-based hybrid composites fabricated through compression molding technique. International Journal of Material Forming 14 (5):1085–95. doi:10.1007/s12289-021-01624-w.
  • Khuntia, T., and S. Biswas. 2022. Mechanical, viscoelastic, and flammability properties of polymer composites reinforced with novel Sirisha bark filler. Journal of Industrial Textiles 51 (4S):5887S–909S. doi:10.1177/15280837221094220.
  • Kilinc, A. C., M. Atagur, O. K. A. N. Ozdemir, I. Sen, N. Kucukdogan, K. Sever, O. Seydibeyoglu, M. Sarikanat, and Y. O. L. D. A. S. Seki. 2016. Manufacturing and characterization of vine stem reinforced high density polyethylene composites. Composites Part B: Engineering 91:267–74. doi:10.1016/j.compositesb.2016.01.033.
  • Kumar, S., K. K. S. Mer, B. Gangil, and V. K. Patel. 2019. Synergy of rice-husk filler on physico-mechanical and tribological properties of hybrid Bauhinia-vahlii/sisal fiber reinforced epoxy composites. Journal of Materials Research and Technology 8 (2):2070–82. doi:10.1016/j.jmrt.2018.12.021.
  • Kuram, E. 2022. Rheological, mechanical and morphological properties of hybrid hazelnut (Corylus avellana L.)/walnut (Juglans regia L.) shell flour-filled acrylonitrile butadiene styrene composite. Journal of Material Cycles & Waste Management 22 (6):2107–17. doi:10.1007/s10163-020-01094-3.
  • Lebreton, L., J. Van Der Zwet, J. W. Damsteeg, B. Slat, A. Andrady, and J. Reisser. 2017. River plastic emissions to the world’s oceans. Nature Communications 8 (1):1–10. doi:10.1038/ncomms15611.
  • Li, S., Z. Li, J. Xue, S. Chen, H. Li, J. Ji, Y. Liang, J. Fei, and W. Jiang. 2023. Pollution and distribution of microplastics in grassland soils of Qinghai–Tibet Plateau, China. Toxics 11 (1):86. doi:10.3390/toxics11010086.
  • Li, Y. W. K. T., J. W. Onorato, C. K. Zhang, Y. Luscombe, and C. K. Luscombe. 2018. Low elastic modulus and high charge mobility of low-crystallinity indacenodithiophene-based semiconducting polymers for potential applications in stretchable electronics. Macromolecules 51 (16):6352–58. doi:10.1021/acs.macromol.8b00898.
  • Madival, A. S., D. Doreswamy, S. A. Handady, K. R. Hebbar, and S. K. Lakshminarayana. 2022. Investigation of the mechanical and liquid absorption properties of a rice straw-based composite for ayurvedic treatment tables. Materials 15 (2):606. doi:10.3390/ma15020606.
  • Madival, A. S. M. S., S. Raviraj, D. Deepak, and D. Doreswamy. 2023. Influence of chemical treatments on the physical and mechanical properties of furcraea foetida fiber for polymer reinforcement applications. Journal of Natural Fibers 20 (1):2136816. doi:10.1080/15440478.2022.2136816.
  • Mahjoub, R., J. M. Yatim, A. R. M. Sam, and M. Raftari. 2014. Characteristics of continuous unidirectional kenaf fiber reinforced epoxy composites. Materials & Design 64:640–49. doi:10.1016/j.matdes.2014.08.010.
  • Mourad, A. H. I., B. Abu-Jdayil, and M. Hassan. 2020. Mechanical behavior of Emirati red shale fillers/unsaturated polyester composite. SN Applied Sciences 2 (3):1–9. doi:10.1007/s42452-020-2284-4.
  • Narayanan, V., A. ElayaPerumal, A. Alavudeen, and M. Thiruchitrambalam. 2011. Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Materials & Design 32 (7):4017–21. doi:10.1016/j.matdes.2011.03.002.
  • Norizan, M. N., K. Abdan, M. S. Salit, and R. Mohamed. 2017. Physical, mechanical and thermal properties of sugar palm yarn fibre loading on reinforced unsaturated polyester composites. Journal of Physical Science 28 (3):115–36. doi:10.21315/jps2017.28.3.8.
  • Ogabi, R. B., A. L. Dauda, S. Gadimoh, M. Abdulrahim, and S. Oladiran. 2016. The effects of hybridization on the mechanical properties of bagasse/sisal/coir reinforced epoxy hybrid composite. Materials Science and Engineering 7 (1):42.
  • Okonkwo, E. G., C. N. Anabaraonye, C. C. Daniel-Mkpume, S. V. Egoigwe, P. E. Okeke, F. G. Whyte, and A. O. Okoani. 2020. Mechanical and thermomechanical properties of clay-Bambara nutshell polyester bio-composite. The International Journal of Advanced Manufacturing Technology 108 (7):2483–96. doi:10.1007/s00170-020-05570-w.
  • Pappu, A., K. L. Pickering, and V. Thakur. 2019. Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Industrial Crops and Products 137:260–69. doi:10.1016/j.indcrop.2019.05.040.
  • Poonia, N., V. Kadam, N. M. Rose, S. Yadav, and N. Shanmugam. 2022. Effect of fiber chemical treatments on rice straw fiber reinforced composite properties. Journal of Natural Fibers 19 (16):14044–54. doi:10.1080/15440478.2022.2114979.
  • Pujar, N. M., and Y. Mani. 2022. Development and experimental investigation of pigeon pea stalk particle reinforced epoxy composites and their hybrid composites for lightweight structural applications. Materials Research 25:e20220173. doi:10.1590/1980-5373-mr-2022-0173.
  • Raja, T., M. Vinayagam, S. Thanakodi, A. H. Seikh, M. H. Siddique, R. Subbiah, A. M. Gebrekidan, and R. Prasad. 2022. Mechanical properties of banyan fiber-reinforced sawdust nanofiller particulate hybrid polymer composite. Journal of Nanomaterials 22 (8):1–8. doi:10.1155/2022/9475468.
  • Ramesh, M., L. N. Rajeshkumar, N. Srinivasan, D. V. Kumar, and D. Balaji. 2022. Influence of filler material on properties of fiber-reinforced polymer composites: A review. e-Polymers 22 (1):898–916. doi:10.1515/epoly-2022-0080.
  • Rashid, B., Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak. 2017. Effect of treatments on the physical and morphological properties of SPF/phenolic composites. Journal of Natural Fibers 14 (5):645–57. doi:10.1080/15440478.2016.1266291.
  • Ravichandran, G., G. Rathnakar, and N. Santhosh. 2021. Comparative study on the effect of HNT and nanoalumina particles on the mechanical properties of vacuum bag moulded glass-epoxy nano composites. Mechanics of Advanced Materials and Structures 8:119–31.
  • Ricciardi, M. R., I. Papa, V. Lopresto, A. Langella, and V. Antonucci. 2019. Effect of hybridization on the impact properties of flax/basalt epoxy composites: Influence of the stacking sequence. Composite Structures 214:476–85. doi:10.1016/j.compstruct.2019.01.087.
  • Rozali, N. A., M. Abu Bakar, M. N. Masri, M. Sulaiman, M. Mohamed, and M. Thirmizir. 2017. Mechanical and water absorption properties of hybrid Kenaf/Glass fibre mat reinforced unsaturated polyester composites. Materials Science Forum 888:228–33. doi:10.4028/www.scientific.net/MSF.888.228.
  • Saba, N., O. Y. Alothman, Z. Almutairi, M. Jawaid, and W. Ghori. 2019. Date palm reinforced epoxy composites: Tensile, impact and morphological properties. Journal of Materials Research and Technology 8 (5):3959–69. doi:10.1016/j.jmrt.2019.07.004.
  • Sadyan, N., and A. Athijayamani. 2016. Mechanical properties and absorption behavior of CSP filled Roselle fiber reinforced hybrid composites. Journal of Materials and Environmental Science 7 (5):1674–80.
  • Saha, A., S. Kumar, and A. Kumar. 2021. Influence of pineapple leaf particulate on mechanical, thermal and biodegradation characteristics of pineapple leaf fiber reinforced polymer composite. Journal of Polymer Research 28 (2):1–23. doi:10.1007/s10965-021-02435-y.
  • Salman, S. D., M. J. Sharba, Z. Leman, M. T. H. Sultan, M. R. Ishak, and F. Cardona. 2015. Physical, mechanical, and morphological properties of woven kenaf/polymer composites produced using a vacuum infusion technique. International Journal of Polymer Science 15 (10):1–11. doi:10.1155/2015/894565.
  • Shivamurthy, B., D. Doreswamy, N. J, and H. C. S. Prasad. 2019. Physical and tribo-mechanical properties of waste rubber tyre/epoxy composites. Materials Research Express 6 (9):095321. doi:10.1088/2053-1591/ab09ba.
  • Shivamurthy, B., K. Murthy, P. C. Joseph, K. Rishi, K. U. Bhat, and S. Anandhan. 2015. Mechanical properties and sliding wear behavior of jatropha seed cake waste/epoxy composites. Journal of Material Cycles & Waste Management 17 (1):144–56. doi:10.1007/s10163-014-0235-0.
  • Singh, J. I. P., S. Singh, V. Dhawan, and P. Gulati. 2021. Flax fiber reinforced polylactic acid composites for non-structural engg. applications: Effect of molding temperature and fiber volume fraction on its mechanical properties. Polymers & Polymer Composites 29 (9_suppl):S780–S89. doi:10.1177/09673911211025159.
  • Singleton, A. C. N., C. A. Baillie, P. W. R. Beaumont, and T. Peijs. 2003. On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite. Composites Part B: Engineering 34 (6):519–26. doi:10.1016/S1359-8368(03)00042-8.
  • Srinivasan, V., B. S. Rajendra, D. Sangeetha, and B. Vijaya Ramnath. 2014. Evaluation of mechanical and thermal properties of banana–flax based natural fibre composite. Materials & Design 60:620–27. doi:10.1016/j.matdes.2014.03.014.
  • Srivastava, G.P. 1990. The physics of phonons, 1–438. 2nd ed. Boca Raton, Florida, United States: CRC Press, Taylor & Francis Group.
  • Srivastava, V. K. P. S. S., and R. Prakash. 2005. Fracture behavior of fly ash filled FRP composite of glass filled Epoxy. Journal of Materials Science 53:1167–78.
  • Suganya, G., D. Jayabalakrishnan, S. Somasundaram, K. Bhaskar, B. K, and S. S. 2022. Mechanical, thermal, and fatigue behavior of aloe vera fiber/pistachio shell powder toughened epoxy resin composite. Biomass Conversion and Biorefinery 22 (5):1–8. doi:10.1007/s13399-022-02787-5.
  • Sydow, Z. M. S., L. Wojciechowski, K. Bienczak, and K. Bieńczak. 2021. Tribological performance of composites reinforced with the agricultural, industrial and post-consumer wastes: A review. Materials 14 (8):1863. doi:10.3390/ma14081863.
  • Thompson, R. C., C. J. Moore, F. S. Vom Saal, and S. H. Swan. 2009. Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences 364 (1526):2153–66. doi:10.1098/rstb.2009.0053.
  • Vijaykumar, G. M., M. H. Ilangovan, B. V. Rather, G. B. Prajwal, K. V. Krishna, N. Venkatesh, K. Reddy, and N. Reddy. 2020. Groundnut shell/rice husk agro-waste reinforced polypropylene hybrid biocomposites. Journal of Building Engineering 27:100991. doi:10.1016/j.jobe.2019.100991.
  • Wang, S. H., S. Li, Z. G. Zou, and G. Zhang. 2020. Experimental research on a feasible rice husk/geopolymer foam building insulation material. Energy & Buildings 226:110358. doi:10.1016/j.enbuild.2020.110358.
  • Yahas, G. T. G. S., J. P. Mavinkere Rangappa, S. Siengchin, and S. Siengchin. 2019. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review. Frontiers in Materials 6:226. doi:10.3389/fmats.2019.00226.
  • Yu, M., R. Huang, C. He, Q. Wu, and X. Zhao. 2016. Hybrid composites from wheat straw, inorganic filler, and recycled polypropylene: Morphology and mechanical and thermal expansion performance. International Journal of Polymer Science 16 (4):1–12. doi:10.1155/2016/2520670.
  • Yussuf, A. A., I. Massoumi, and A. Hassan. 2010. Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: The influence of the natural fibers on the mechanical, thermal and biodegradability properties. Journal of Polymers and the Environment 18 (3):422–29. doi:10.1007/s10924-010-0185-0.
  • Zhang, L., and Y. Hu. 2014. Novel lignocellulosic hybrid particleboard composites made from rice straws and coir fibers. Journal of Materials and Design 55:19–26. doi:10.1016/j.matdes.2013.09.066.