1,122
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Acoustical and Thermal Characterization of Insulating Materials Made from Wool and Sugarcane Bagasse

, , &

References

  • Ahmed, A., and A. Qayoum. 2021. Investigation on the thermal degradation, moisture absorption characteristics and antibacterial behavior of natural insulation materials. Materials for Renewable and Sustainable Energy 10 (1):1–12. doi:10.1007/s40243-021-00188-8.
  • Asdrubali, F., F. D’Alessandro, and S. Schiavoni. 2015. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies 4:1–17. doi:10.1016/j.susmat.2015.05.002.
  • Asis, P., M. Mvubu, S. Muniyasamy, A. Botha, and R. D. Anandjiwala. 2015. Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy and Buildings 92:161–69. doi:10.1016/j.enbuild.2015.01.056.
  • Balaji, A., B. Karthikeyan, J. Swaminathan, and C. Sundar Raj. 2019. Effect of filler content of chemically treated short bagasse fiber-reinforced cardanol polymer composites. Journal of Natural Fibers 16 (4):613–27. doi:10.1080/15440478.2018.1431829.
  • Ballagh, K. O. 1996. Acoustical Properties of Wool. Applied Acoustics 48 (2):101–20. doi:10.1016/0003-682X(95)00042-8.
  • Beheshti, M. H., A. Khavanin, A. Safari Varyani, M. Nizam Bin Yahya, A. Alami, F. Khajenasiri, and R. Talebitooti. 2022. Improving the sound absorption of natural waste material-based sound absorbers using micro-perforated plates. Journal of Natural Fibers 19 (13):5199–210. doi:10.1080/15440478.2021.1875364.
  • Berardi, U., and G. Iannace. 2015. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment 94 (December):840–52. doi:10.1016/j.buildenv.2015.05.029.
  • Berardi, U., G. Iannace, and M. Di Gabriele. 2016. Characterization of sheep wool panels for room acoustic applications. In Proceedings of Meetings on Acoustics, 28:15001. Acoustical Society of America. 10.1121/2.0000336.
  • Bousshine, S., M. Ouakarrouch, A. Bybi, N. Laaroussi, M. Garoum, and A. Tilioua. 2022. Acoustical and thermal characterization of sustainable materials derived from vegetable, agricultural, and animal fibers. Applied Acoustics 187:108520. doi:10.1016/j.apacoust.2021.108520.
  • Cascone, S. M., S. Cascone, and M. Vitale. 2020. Building insulating materials from agricultural by-products: a review. Smart Innovation, Systems and Technologies 163:309–18. doi:10.1007/978-981-32-9868-2_26.
  • Dénes, O., I. Florea, and D. Lucia Manea. 2019. Utilization of sheep wool as a building material. Procedia Manufacturing 32:236–41. doi:10.1016/j.promfg.2019.02.208.
  • Hajiha, H., and M. Sain. 2015. The use of sugarcane bagasse fibres as reinforcements in composites. In Biofiber reinforcements in composite materials 525–49. Elsevier Inc. doi:10.1533/9781782421276.4.525.
  • Huang, L., and L. Shu Liu. 2009. Simultaneous determination of thermal conductivity and thermal diffusivity of food and agricultural materials using a transient plane-source method. Journal of Food Engineering 95 (1):179–85. doi:10.1016/j.jfoodeng.2009.04.024.
  • Ilangovan, M., A. P. Navada, V. Guna, F. Touchaleaume, B. Saulnier, Y. Grohens, and N. Reddy. 2022. Hybrid biocomposites with high thermal and noise insulation from discarded wool, poultry feathers, and their blends. Construction and Building Materials 345:128324. doi:10.1016/j.conbuildmat.2022.128324.
  • Kim, N. K., S. Dutta, and D. Bhattacharyya. 2018. A review of flammability of natural fibre reinforced polymeric composites. Composites Science and Technology 162:64–78. doi:10.1016/j.compscitech.2018.04.016.
  • Kobiela-Mendrek, K., M. Bączek, J. Broda, M. Rom, I. Espelien, and I. Klepp. 2022. Acoustic performance of sound absorbing materials produced from wool of local mountain sheep. Materials 15 (9):3139. doi:10.3390/ma15093139.
  • Liao, J., S. Zhang, and X. Tang. 2022. Sound absorption of hemp fibers (cannabis sativa l.) based nonwoven fabrics and composites: a review. Journal of Natural Fibers 19 (4):1297–309. doi:10.1080/15440478.2020.1764453.
  • Malawade, U. A., and M. G. Jadhav. 2020. Investigation of the acoustic performance of bagasse. Journal of Materials Research and Technology 9 (1):882–89. doi:10.1016/j.jmrt.2019.11.028.
  • Mehrzad, S., E. Taban, P. Soltani, S. Ehsan Samaei, and A. Khavanin. 2022. Sugarcane bagasse waste fibers as novel thermal insulation and sound-absorbing materials for application in sustainable buildings. Building and Environment 211:108753. doi:10.1016/j.buildenv.2022.108753.
  • Moghaddam, M. K., S. Safi, S. Hassanzadeh, and S. Majid Mortazavi. 2016. Sound absorption characteristics of needle-punched sustainable typha/polypropylene non-woven. The Journal of the Textile Institute 107 (2):145–53. doi:10.1080/00405000.2015.1016346.
  • Morton, W. E., and J. W. S. Hearle. 2008. 1 - an introduction to fibre structure BT - Physical properties of textile fibres, 4th, 1–81. Woodhead Publishing Series in Textiles.10.1533/9781845694425.1
  • Oldham, D. J., C. A. Egan, and R. D. Cookson. 2011. Sustainable acoustic absorbers from the biomass. Applied Acoustics 72 (6):350–63. doi:10.1016/j.apacoust.2010.12.009.
  • Othmani, C., M. Taktak, A. Zein, T. Hentati, T. Elnady, T. Fakhfakh, and M. Haddar. 2016. Experimental and theoretical investigation of the acoustic performance of sugarcane wastes based material. Applied Acoustics 109:90–96. doi:10.1016/j.apacoust.2016.02.005.
  • Ramlee, N. A., M. Jawaid, A. Safwan Ismail, E. Syams Zainudin, and S. Abdul Karim Yamani. 2021. Evaluation of thermal and acoustic properties of oil palm empty fruit bunch/sugarcane bagasse fibres based hybrid composites for wall buildings thermal insulation. Fibers and Polymers 22 (9):2563–71. doi:10.1007/s12221-021-0224-6.
  • Ramlee, N. A., J. Naveen, and M. Jawaid. 2021. Potential of Oil Palm Empty Fruit Bunch (OPEFB) and sugarcane bagasse fibers for thermal insulation application – a review. Construction and Building Materials 271:121519. doi:10.1016/j.conbuildmat.2020.121519.
  • Rey, R. D., A. Uris, J. Alba, and P. Candelas. 2017. Characterization of sheep wool as a sustainable material for acoustic applications. Materials 10 (11):1277. doi:10.3390/ma10111277.
  • Sanjuán, R., J. Anzaldo, J. Vargas, J. Turrado, and R. Patt. 2001. Morphological and chemical composition of pith and fibers from Mexican sugarcane bagasse. Holz Als Roh - Und Werkstoff 59 (6):447–50. doi:10.1007/s001070100236.
  • Taban, E., A. Khavanin, A. Ohadi, A. Putra, A. Jonidi Jafari, M. Faridan, and A. Soleimanian. 2019. Study on the acoustic characteristics of natural date palm fibres: experimental and theoretical approaches. Building and Environment 161:106274. doi:10.1016/j.buildenv.2019.106274.
  • Tămaş-Gavrea, D.-R., and T.-O. Dénes. 2020. Mechanical, thermal and acoustical properties of an innovative lime-wool composite. Procedia Manufacturing 46 (January):402–09. doi:10.1016/j.promfg.2020.03.059.
  • Tămaş-Gavrea, D.-R., T.-O. Dénes, R. Iştoan, A. Elena Tiuc, D. Lucia Manea, and O. Vasile. 2020. A novel acoustic sandwich panel based on sheep wool. Coatings 10 (2):148. doi:10.3390/coatings10020148.
  • Tsuchida, J. E., C. Alves Rezende, R. De Oliveira-Silva, M. Aparecida Lima, M. Nogueira D’Eurydice, I. Polikarpov, and T. José Bonagamba. 2014. Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse. Biotechnology for Biofuels 7 (1):1–13. doi:10.1186/PREACCEPT-1868043550122633.
  • Zach, J., A. Korjenic, V. Petránek, J. Hroudová, and T. Bednar. 2012. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy and Buildings 49 (June):246–53. doi:10.1016/j.enbuild.2012.02.014.
  • Zhu, Y., Y. Jiang, Z. Zhu, H. Deng, H. Ding, L. Yanhong, L. Zhang, and J. Lin. 2018. Preparation of a porous hydroxyapatite-carbon composite with the bio-template of sugarcane top stems and its use for the Pb(II) removal. Journal of Cleaner Production 187:650–61. doi:10.1016/j.jclepro.2018.03.275.