642
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biodegradation of Wheat Straw/PLA Composites by Four Kinds of Microorganisms

ORCID Icon, , ORCID Icon, , &

References

  • Armentano, I., N. Bitinis, E. Fortunati, S. Mattioli, N. Rescignano, R. Verdejo, M. A. Lopez-Manchado, and J. M. Kenny. 2013. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science 38 (10–11):1720–12. doi:10.1016/j.progpolymsci.2013.05.010.
  • Behera, A. K., S. Manna, and N. Das. 2021. Effect of soy waste/cellulose on mechanical, water sorption, and biodegradation properties of thermoplastic starch composites. Starch-Starke 74 (1–2):2100123. doi:10.1002/star.202100123.
  • Behera, A. K., C. Mohanty, and A. Mohanty. 2021. Development and characterization of biodegradable jute reinforced sapling pot. Journal of Natural Fibers 19 (14):7738–49. doi:10.1080/15440478.2021.1958409.
  • Behera, A. K., R. Sen, and B. Adhikari. 2020. Environment-friendly fully biodegradable jute-poly(vinyl alcohol) modified soy composite development as plastic substitute. Journal of Natural Fibers 19 (3):905–14. doi:10.1080/15440478.2020.1764440.
  • Behera, A. K., R. Srivastava, and A. B. Das. 2022. Mechanical and degradation properties of thermoplastic starch reinforced nanocomposites. Starch-Starke 74 (3–4):2100270. doi:10.1002/star.202100270.
  • Burrola-Nunez, H., P. Herrera-Franco, H. Soto-Valdez, D. E. Rodriguez-Felix, R. Melendrez-Amavizca, and T. J. Madera-Santana. 2019. Production of biocomposites using different pre-treated cut jute fibre and polylactic acid matrix and their properties. Journal of Natural Fibers 18 (11):1604–17. doi:10.1080/15440478.2019.1693473.
  • Chai, X. C., C. X. He, Y. T. Liu, E. Niyitanga, L. Y. Wang, and W. X. Zhang. 2023. Degradation of wheat straw/polylactic acid composites with and without sodium alginate in natural soil and the effects on soil microorganisms. Journal of Applied Polymer Science 140 (6):53447. doi:10.1002/app.53447.
  • Chai, X. C., C. X. He, Y. T. Liu, E. Niyitanga, Y. Zhou, L. Y. Wang, and W. X. Zhang. 2022. Degradation of wheat straw/polylactic acid composites by Aspergillus niger. Polymer Composites 43 (3):1823–31. doi:10.1002/pc.26500.
  • Chougan, M., S. H. Ghaffar, and M. J. Al-Kheetan. 2023. Graphene-based nano-functional materials for surface modification of wheat straw to enhance the performance of bio-based polylactic acid composites. Materials Today Sustainability 21:100308. doi:10.1016/j.mtsust.2022.100308.
  • Chougan, M., S. H. Ghaffar, E. Mijowska, W. Kukulka, and P. Sikora. 2022. High-performance polylactic acid compressed strawboard using pre-treated and functionalised wheat straw. Industrial Crops and Products 184:114996. doi:10.1016/j.indcrop.2022.114996.
  • Da Silva, D., M. Kaduri, M. Poley, O. Adir, N. Krinsky, J. Shainsky-Roitman, and A. Schroeder. 2018. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. The Chemical Engineering Journal 340:9–14. doi:10.1016/j.cej.2018.01.010.
  • Debeli, D. K., Z. Zhang, F. S. Jiao, and J. S. Guo. 2019. Diammonium phosphate-modified ramie fiber reinforced polylactic acid composite and its performances on interfacial, thermal, and mechanical properties. Journal of Natural Fibers 16 (3):342–56. doi:10.1080/15440478.2017.1423255.
  • Dubey, S. P., H. A. Abhyankar, V. Marchante, J. L. Brighton, K. Blackburn, C. Temple, B. Bergmann, G. Trinh, and C. David. 2016. Modelling and validation of synthesis of poly lactic acid using an alternative energy source through a continuous reactive extrusion process. Polymers 8 (4):164. doi:10.3390/polym8040164.
  • Fortunati, E., D. Puglia, C. Santulli, F. Sarasini, and J. M. Kenny. 2012. Biodegradation of phormium tenax/poly(lactic acid) composites. Journal of Applied Polymer Science 125 (S2):E562–E72. doi:10.1002/app.36839.
  • Ghaffar, S. H., and M. Z. Fan. 2017. An aggregated understanding of physicochemical properties and surface functionalities of wheat straw node and internode. Industrial Crops and Products 95:207–15. doi:10.1016/j.indcrop.2016.10.045.
  • Ghaffar, S. H., M. Z. Fan, and B. McVicar. 2015. Bioengineering for utilisation and bioconversion of straw biomass into bio-products. Industrial Crops and Products 77:262–74. doi:10.1016/j.indcrop.2015.08.060.
  • He, J., T. Yu, S. K. Chen, and Y. Li. 2021. Soil degradation behavior of ramie/thermoset poly(lactic acid) composites. Journal of Polymer Reserrch 28 (10):379. doi:10.1007/s10965-021-02715-7.
  • Hidayat, A., and S. Tachibana. 2012. Characterization of polylactic acid (PLA)/kenaf composite degradation by immobilized mycelia of Pleurotus ostreatus. International Biodeterioration & Biodegradation 71:50–54. doi:10.1016/j.ibiod.2012.02.007.
  • Huang, S. Y., Y. F. Xue, B. Yu, L. M. Wang, C. Zhou, and Y. H. Ma. 2021. A review of the recent developments in the bioproduction of polylactic acid and its precursors optically pure lactic acids. Molecules 26 (21):6446. doi:10.3390/molecules26216446.
  • Karimi-Avargani, M., F. Bazooyar, D. Biria, A. Zamani, and M. Skrifvars. 2020. The special effect of the Aspergillus flavus and its enzymes on biological degradation of the intact polylactic acid (PLA) and PLA-Jute composite. Polymer Degradation and Stability 179:109295. doi:10.1016/j.polymdegradstab.2020.109295.
  • Kawashima, N., J. Tokuda, T. Yagi, and K. Takahashi. 2022. Isolation of a Nocardiopsis chromatogenes strain that degrades PLA (polylactic acid) in pig waste-based compost. Archives of Microbiology 204 (10):599. doi:10.1007/s00203-022-03144-w.
  • Kim, M. N., and S. T. Park. 2010. Degradation of Poly(L-lactide) by a Mesophilic Bacterium. Journal of Applied Polymer Science 117 (1):67–74. doi:10.1002/app.31950.
  • Kong, X., D. C. Jin, S. L. Jin, Z. G. Wang, H. Q. Yin, M. Y. Xu, and Y. Deng. 2018. Responses of bacterial community to dibutyl phthalate pollution in a soil- vegetable ecosystem. Journal of Hazardous Materials 353:142–50. doi:10.1016/j.jhazmat.2018.04.015.
  • Li, X. R., Y. Lin, M. L. Liu, L. P. Meng, and C. F. Li. 2022. A review of research and application of polylactic acid composites. Journal of Applied Polymer Science 140 (7). doi:10.1002/app.53477.
  • Lima, E. M. B., R. N. Oliveira, A. Middea, I. M. De Castro, M. D. Mattos, T. T. M. Neves, L. F. Da Costa, R. Neumann, and M. I. B. Tavares. 2020. Degradation of PLA biocomposites containing mango seed and organo montmorillonite minerals. Journal of Natural Fibers 19 (5):1783–91. doi:10.1080/15440478.2020.1788488.
  • Luo, Y. Y., Y. Y. Zhang, Y. B. Xu, X. T. Guo, and L. Y. Zhu. 2020. Distribution characteristics and mechanism of microplastics mediated by soil physicochemical properties. Science of the Total Environment 726:138389. doi:10.1016/j.scitotenv.2020.138389.
  • Lv, S. S., X. J. Liu, J. Y. Gu, Y. Jiang, H. Y. Tan, and Y. H. Zhang. 2017. Microstructure analysis of polylactic acid-based composites during degradation in soil. International Biodeterioration & Biodegradation 122:53–60. doi:10.1016/j.ibiod.2017.04.017.
  • Papong, S., P. Malakul, R. Trungkavashirakun, P. Wenunun, T. Chom-In, M. Nithitanakul, and E. Sarobol. 2014. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. Journal of Cleaner Production 65:539–50. doi:10.1016/j.jclepro.2013.09.030.
  • Pattanasuttichonlakul, W., N. Sombatsompop, and B. Prapagdee. 2018. Accelerating biodegradation of PLA using microbial consortium from dairy wastewater sludge combined with PLA-degrading bacterium. International Biodeterioration & Biodegradation 132:74–83. doi:10.1016/j.ibiod.2018.05.014.
  • Penkhrue, W., C. Khanongnuch, K. Masaki, W. Pathom-Aree, W. Punyodom, and S. Lumyong. 2015. Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World Journal of Microbiology & Biotechnology 31 (9):1431–42. doi:10.1007/s11274-015-1895-1.
  • Salazar-Sanchez, M. D. R., S. D. Campo-Erazo, H. S. Villada-Castillo, and J. F. Solanilla-Duque. 2019. Structural changes of cassava starch and polylactic acid films submitted to biodegradation process. International Journal of Biological Macromolecules 129:442–47. doi:10.1016/j.ijbiomac.2019.01.187.
  • Singhvi, M. S., S. S. Zinjarde, and D. V. Gokhale. 2019. Polylactic acid: Synthesis and biomedical applications. Journal of Applied Microbiology 127 (6):1612–26. doi:10.1111/jam.14290.
  • Stepczynska, M., and P. Rytlewski. 2018. Enzymatic degradation of flax-fibers reinforced polylactide. International Biodeterioration & Biodegradation 126:160–66. doi:10.1016/j.ibiod.2017.11.001.
  • Turco, R., D. Zannini, S. Mallardo, G. Dal Poggetto, R. Tesser, G. Santagata, M. Malinconico, and M. Di Serio. 2021. Biocomposites based on poly(lactic acid), Cynara Cardunculus seed oil and fibrous presscake: A novel eco-friendly approach to hasten PLA biodegradation in common soil. Polymer Degradation and Stability 188:109576. doi:10.1016/j.polymdegradstab.2021.109576.
  • Wang, J. F., J. H. Bai, H. Hua, B. Tang, W. L. Bai, and X. G. Wang. 2022. Characterization and scalable production of industrial hemp fiber filled PLA bio-composites. Journal of Natural Fibers 19 (16):13426–37. doi:10.1080/15440478.2022.2095549.
  • Xu, B., Y. P. Chen, J. He, S. X. Cao, J. W. Liu, R. Xue, F. X. Xin, X. J. Qian, J. Zhou, and W. L. Dong. 2022. New insights into the biodegradation of polylactic acid: From degradation to upcycling. Environmental Reviews 30 (1):30–38. doi:10.1139/er-2020-0117.
  • Zaaba, N. F., and M. Jaafar. 2020. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polymer Engineering and Science 60 (9):2061–75. doi:10.1002/pen.25511.
  • Zhang, X. Q., M. Espiritu, A. Bilyk, and L. Kurniawan. 2008. Morphological behaviour of poly(lactic acid) during hydrolytic degradation. Polymer Degradation and Stability 93 (10):1964–70. doi:10.1016/j.polymdegradstab.2008.06.007.