838
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Failure Analysis of Plant Fibre-Reinforced Composite in Civil Building Materials Using Non-Destructive Testing Methods: Current and Future Trend

ORCID Icon, , , &

References

  • Ali, B., M. Azab, H. Ahmed, R. Kurda, M. H. El Ouni, and A. B. Elhag. 2022. Investigation of physical, strength, and ductility characteristics of concrete reinforced with banana (Musaceae) stem fiber. Journal of Building Engineering 61:105024. doi:10.1016/j.jobe.2022.105024.
  • Aluko, O. G., J. M. Yatim, M. A. A. Kadir, and K. Yahya. 2022. Impact of biofiber and sustained temperature on residual cube strength and microstructural properties of fire-damaged concrete. SSRN Electronic Journal. doi:10.2139/ssrn.4231048.
  • Amir, A. L., M. R. Ishak, N. Yidris, M. Y. M. Zuhri, and M. R. M. Asyraf. 2021. Advances of composite cross arms with incorporation of material core structures: manufacturability, recent progress and views. Journal of Materials Research and Technology 13:1115–16. doi:10.1016/j.jmrt.2021.05.040.
  • Amir, S. M. M., M. T. H. Sultan, M. Jawaid, M. R. Ahmad, M. N. I. Ishak, S. Sani, S. N. A. Safri, A. U. M. Shah, S. Mohd, and K. A. M. Salleh. 2022. Damage detection and evaluation on gamma irradiated oil palm EFB/Kevlar hybrid composites using NDT methods. In Repair of advanced composites for aerospace applications, 128–42. Boca Raton: CRC Press. doi:10.1201/9781003200994-11.
  • Anand Raj, M. K., S. Muthusamy, H. Panchal, A. M. Mahmoud Ibrahim, M. S. Alsoufi, and A. H. Elsheikh. 2022. Investigation of mechanical properties of dual-fiber reinforcement in polymer composite. Journal of Materials Research and Technology 18:3908–15. doi:10.1016/j.jmrt.2022.04.053.
  • Anwar, M., F. Mustapha, M. T. H. Sultan, I. A. Halin, M. N. Abdullah, M. I. Hassim, and M. Mustapha. 2021. Damage identification on impact and lightning damage of flax composite laminates (Linum usitatissimum) using long-pulse thermography of a low-resolution infrared camera. Frontiers in Materials 8:618461.
  • Barouni, A., C. Lupton, C. Jiang, A. Saifullah, K. Giasin, Z. Zhang, and H. N. Dhakal. 2022. Investigation into the fatigue properties of flax fibre epoxy composites and hybrid composites based on flax and glass fibres. Composite Structures 281:115046. doi:10.1016/j.compstruct.2021.115046.
  • Beaumont, P. W. R. 2020. The structural integrity of composite materials and long-life implementation of composite structures. Applied Composite Materials 27 (5):449–78. doi:10.1007/s10443-020-09822-6.
  • Choi, Y. C. 2022. Hydration and internal curing properties of plant-based natural fiber-reinforced cement composites. Case Studies in Construction Materials 17:e01690. doi:10.1016/j.cscm.2022.e01690.
  • Composites World. 2014. Destroyer deckhouse roof meets U.S. Navy fire code with phenolic composite. Accessed June 28, 2023 https://www.compositesworld.com/articles/destroyer-deckhouse-roof-meets-us-navy-fire-code-with-phenolic-composite.
  • Demirci, M. T., and Ö. S. Şahin. 2022. Effect of oil pressure upon filament wound basalt/glass fibers hybrid polymer based composite pipes subjected to low velocity impact. Composite Structures 288:115395. doi:10.1016/j.compstruct.2022.115395.
  • Ebtehaj, I., H. Bonakdari, A. H. Zaji, H. Azimi, and F. Khoshbin. 2015. GMDH-type neural network approach for modeling the discharge coefficient of rectangular sharp-crested side weirs. Engineering Science & Technology, an International Journal 18 (4):746–57. doi:10.1016/j.jestch.2015.04.012.
  • Fathi, H., V. Nasir, and S. Kazemirad. 2020. Prediction of the mechanical properties of wood using guided wave propagation and machine learning. Construction and Building Materials 262:120848. doi:10.1016/j.conbuildmat.2020.120848.
  • Gao, C., Q. Fu, L. Huang, L. Yan, and G. Gu. 2022. Jute fiber-reinforced polymer tube-confined sisal fiber-reinforced recycled aggregate concrete waste. Polymers 14 (6):1260. doi:10.3390/polym14061260.
  • Girimurugan, R., C. Shilaja, S. Mayakannan, S. Rajesh, and B. Aravinth. 2022. Experimental investigations on flexural and compressive properties of epoxy resin matrix sugarcane fiber and tamarind seed powder reinforced bio-composites. Materials Today: Proceedings 66:822–28. doi:10.1016/j.matpr.2022.04.386.
  • Goumghar, A., M. Assarar, W. Zouari, K. Azouaoui, A. El Mahi, and R. Ayad. 2022. Study of the fatigue behaviour of hybrid flax-glass/epoxy composites. Composite Structures 294:115790. doi:10.1016/j.compstruct.2022.115790.
  • Guo, Y., X. Chen, B. Chen, R. Wen, and P. Wu. 2021. Analysis of foamed concrete pore structure of railway roadbed based on X-ray computed tomography. Construction and Building Materials 273:121773. doi:10.1016/j.conbuildmat.2020.121773.
  • Hannah, M., 2022. Five composites’ trends to watch. Accessed June 28, 2023. https://www.compositesworld.com/articles/composites-trends-to-look-for-at-imts-2022.
  • Hariprasad, P., M. Kannan, C. Ramesh, A. Felix Sahayaraj, I. Jenish, F. Hussain, N. Ben Khedher, A. Boudjemline, V. Suresh, and K. Raja. 2022. Mechanical and morphological studies of sansevieria trifasciata fiber-reinforced polyester composites with the addition of SiO2 and B4C. Advances in Materials Science and Engineering 2022:1–5. doi:10.1155/2022/1634670.
  • Ismail, K. I., M. T. H. Sultan, A. U. M. Shah, M. Jawaid, and S. N. A. Safri. 2019. Low velocity impact and compression after impact properties of hybrid bio-composites modified with multi-walled carbon nanotubes. Composites Part B: Engineering 163:455–63. doi:10.1016/j.compositesb.2019.01.026.
  • Jang, K., N. Kim, and Y.-K. An. 2019. Deep learning–based autonomous concrete crack evaluation through hybrid image scanning. Structural Health Monitoring 18 (5–6):1722–37. doi:10.1177/1475921718821719.
  • Javanshour, F., A. Prapavesis, N. Pournoori, G. C. Soares, O. Orell, T. Pärnänen, M. Kanerva, A. W. Van Vuure, and E. Sarlin. 2022. Impact and fatigue tolerant natural fibre reinforced thermoplastic composites by using non-dry fibres. Composites Part A: Applied Science and Manufacturing 161:107110. doi:10.1016/j.compositesa.2022.107110.
  • Khan, M., and M. Ali. 2018. Effect of super plasticizer on the properties of medium strength concrete prepared with coconut fiber. Construction and Building Materials 182:703–15. doi:10.1016/j.conbuildmat.2018.06.150.
  • Kouta, N., J. Saliba, and N. Saiyouri. 2020. Effect of flax fibers on early age shrinkage and cracking of earth concrete. Construction and Building Materials 254:119315. doi:10.1016/j.conbuildmat.2020.119315.
  • Kraljevski, I., F. Duckhorn, C. Tschope, and M. Wolff. 2021. Machine learning for anomaly assessment in sensor networks for NDT in aerospace. IEEE Sensors Journal 21 (9):11000–08. doi:10.1109/JSEN.2021.3062941.
  • Kumar, S., and A. Saha. 2022. Effects of stacking sequence of pineapple leaf-flax reinforced hybrid composite laminates on mechanical characterization and moisture resistant properties. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 236 (3):1733–50. doi:10.1177/09544062211023105.
  • Laraba, S. R., A. Rezzoug, R. Halimi, L. Wei, Y. Yang, S. Abdi, Y. Li, and W. Jie. 2022. Development of sandwich using low-cost natural fibers: Alfa-Epoxy composite core and jute/metallic mesh-Epoxy hybrid skin composite. Industrial Crops and Products 184:115093. doi:10.1016/j.indcrop.2022.115093.
  • Loganathan, T. M., M. T. H. Sultan, S. M. Muhammad Amir, J. Naveen, M. R. Shari, S. Mustapa, M. F. Saharudin, I. S. B. Mohd Rabu, A. U. M. Shah, and S. Mohd. 2022. Low-velocity impact, free-fall drop test of prototype, and failure analysis of hybrid palm/kenaf reinforced MWCNT phenolic composites. Journal of Natural Fibers 19 (17):15863–81. doi:10.1080/15440478.2022.2133049.
  • Loganathan, T., K. Vinoth Kumar, K. Ayyappa, G. Mahendran, and G. Venkatachalam. 2022. Mechanical and vibrational property evaluation of banana fiber epoxy sandwich composite with steel wire mesh core. Journal of Natural Fibers 19 (11):4024–37. doi:10.1080/15440478.2020.1848744.
  • Madhavi, K., V. V. Harshith, M. Gangadhar, V. Chethan Kumar, and T. Raghavendra. 2021. External strengthening of concrete with natural and synthetic fiber composites. Materials Today: Proceedings 38:2803–09. doi:10.1016/j.matpr.2020.08.737.
  • Mahesh, S., M. Chandrasekar, R. Asokan, Y. C. Mouli, K. Sridhar, V. V. Krishna Vamsi, M. D. Varma, and P. S. Venkatanarayanan. 2021. Influence of incident energy on sisal/epoxy composite subjected to low velocity impact and damage characterization using ultrasonic C-scan. Applied Science and Engineering Progress. doi:10.14416/j.asep.2021.07.005.
  • Maleki, H. R., B. Abazadeh, Y. Arao, and M. Kubouchi. 2022. Selection of an appropriate non-destructive testing method for evaluating drilling-induced delamination in natural fiber composites. NDT & E International 126:102567. doi:10.1016/j.ndteint.2021.102567.
  • Malinowski, P. H., W. M. Ostachowicz, F. Touchard, M. Boustie, L. Chocinski-Arnault, P. P. Gonzalez, L. Berthe, D. Silva de Vasconcellos, and L. Sorrentino. 2018. Study of plant fibre composites with damage induced by laser and mechanical impacts. Composites Part B: Engineering 152:209–19. doi:10.1016/j.compositesb.2018.07.004.
  • Miliket, T. A., M. B. Ageze, M. T. Tigabu, and M. A. Zeleke. 2022. Experimental characterizations of hybrid natural fiber-reinforced composite for wind turbine blades. Heliyon 8 (3):e09092. doi:10.1016/j.heliyon.2022.e09092.
  • Muhammad Amir, S. M., M. T. Hameed Sultan, M. Jawaid, A. H. Ariffin, M. R. Ishak, M. R. Yusof, S. Mohd, and K. A. Mohd Salleh. 2018. Effect of gamma radiation on compressive properties of kevlar/oil palm empty fruit bunch hybrid composites. BioResources 13 (4). doi:10.15376/biores.13.4.7628-7639.
  • Müller, M., V. Šleger, V. Kolář, M. Hromasová, D. Piš, and R. K. Mishra. 2022. Low-cycle fatigue behavior of 3D-Printed PLA reinforced with natural filler. Polymers 14 (7):1301. doi:10.3390/polym14071301.
  • Najeeb, M. I., M. T. Hameed Sultan, A. U. Md Shah, S. M. Muhammad Amir, S. N. A. Safri, M. Jawaid, and M. R. Shari. 2021. Low-velocity impact analysis of Pineapple Leaf Fiber (PALF) hybrid composites. Polymers 13 (18):3194. doi:10.3390/polym13183194.
  • Najeeb, M. I., M. T. H. Sultan, Y. Andou, A. U. Shah, K. Eksiler, M. Jawaid, and A. H. Ariffin. 2021. Characterization of lignocellulosic biomass from Malaysian’s yankee pineapple AC6 toward composite application. Journal of Natural Fibers 18 (12):2006–18. doi:10.1080/15440478.2019.1710655.
  • Najeeb, M. I., M. T. H. Sultan, A. U. M. Shah, S. N. A. Safri, M. Jawaid, A. R. Abu Talib, and A. A. Basri. 2022. Flexural, dynamic and thermo-mechanical analysis of pineapple leaf fiber/epoxy composites. Journal of Natural Fibers 19 (17):15930–47. doi:10.1080/15440478.2022.2139323.
  • Niccolai, A., D. Caputo, L. Chieco, F. Grimaccia, and M. Mussetta. 2021. Machine learning-based detection technique for NDT in industrial manufacturing. Mathematics 9 (11):1251. doi:10.3390/math9111251.
  • Nie, J., J. Wang, S. Gou, Y. Zhu, and J. Fan. 2019. Technological development and engineering applications of novel steel-concrete composite structures. Frontiers of Structural and Civil Engineering 13 (1):1–14. doi:10.1007/s11709-019-0514-x.
  • Pai, A., A. R. Kini, C. R. Kini, and S. S. B. 2022. Effect of natural fibre-epoxy plies on the mechanical and shock wave impact response of fibre metal laminates. Engineered Science 19:292–300. doi:10.30919/es8d730.
  • Papa, I., V. Lopresto, and A. Langella. 2021. Ultrasonic inspection of composites materials: application to detect impact damage. International Journal of Lightweight Materials and Manufacture 4 (1):37–42. doi:10.1016/j.ijlmm.2020.04.002.
  • Randhawa, K. S., and A. Patel. 2022. Influence of moisture/water absorption on mechanical and thermal properties of polyamide6/boric oxide composites. Pigment & Resin Technology 51 (3):354–63. doi:10.1108/PRT-03-2021-0031.
  • Rath, A., B. Grisin, T. D. Pallicity, L. Glaser, J. Guhathakurta, N. Oehlsen, S. Simon, S. Carosella, P. Middendorf, and L. Stegbauer. 2023. Fabrication of chitosan-flax composites with differing molecular weights and its effect on mechanical properties. Composites Science and Technology 235:109952. doi:10.1016/j.compscitech.2023.109952.
  • Ravi, Y. V., N. Kapilan, S. Rajole, Y. S. Balaji, N. Varun Kumar Reddy, and B. K. Venkatesha. 2022. Damage resistance evaluation of E-glass and hybrid hemp-banana natural fiber composite helmet using drop weight impact test. Materials Today: Proceedings 54:330–35. doi:10.1016/j.matpr.2021.09.213.
  • Razali, N., M. T. H. Sultan, and M. Jawaid. 2019. Impact damage analysis of hybrid composite materials. In Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, by M. Jawaid, M. Thariq, and N. Saba, 121–132. Elsevier.
  • Ren, G., B. Yao, M. Ren, and X. Gao. 2022. Utilization of natural sisal fibers to manufacture eco-friendly ultra-high performance concrete with low autogenous shrinkage. Journal of Cleaner Production 332:130105. doi:10.1016/j.jclepro.2021.130105.
  • Sajin, J. B., R. Christu Paul, J. S. Binoj, B. Brailson Mansingh, M. Gerald Arul Selvan, K. L. Goh, R. S. Rimal Isaac, and M. S. Senthil Saravanan. 2022. Impact of fiber length on mechanical, morphological and thermal analysis of chemical treated jute fiber polymer composites for sustainable applications. Current Research in Green and Sustainable Chemistry 5:100241. doi:10.1016/j.crgsc.2021.100241.
  • Sanjeevi, S., V. Shanmugam, S. Kumar, V. Ganesan, G. Sas, D. J. Johnson, M. Shanmugam, A. Ayyanar, K. Naresh, R. E. Neisiany, et al. 2021. Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Scientific Reports 11 (1):13385. doi:10.1038/s41598-021-92457-9.
  • Shahar, F. S., M. T. Hameed Sultan, S. N. A. Safri, M. Jawaid, A. R. Abu Talib, A. A. Basri, and A. U. Md Shah. 2022. Fatigue and impact properties of 3D printed PLA reinforced with kenaf particles. Journal of Materials Research and Technology 16:461–70. doi:10.1016/j.jmrt.2021.12.023.
  • Shipway, N. J., P. Huthwaite, M. J. S. Lowe, and T. J. Barden. 2021. Using ResNets to perform automated defect detection for fluorescent penetrant inspection. NDT & E International 119:102400. doi:10.1016/j.ndteint.2020.102400.
  • Siwowski, T., and M. Rajchel. 2019. Structural performance of a hybrid FRP composite – lightweight concrete bridge girder. Composites Part B: Engineering 174:107055. doi:10.1016/j.compositesb.2019.107055.
  • Su, L., X. Yu, K. Li, and M. Pecht. 2020. Defect inspection of flip chip solder joints based on non-destructive methods: a review. Microelectronics Reliability 110:113657. doi:10.1016/j.microrel.2020.113657.
  • Syed Abdullah, S. I. B. 2021. Low Velocity Impact Testing on Laminated Composites. In Impact Studies of Composite Materials, by M. T. H. Sultan, A. U. M. Shah, and N. Saba, 1–17. Singapore: Springer Singapore. doi:10.1007/978-981-16-1323-4_1.
  • Szajerski, P., J. Celinska, A. Gasiorowski, R. Anyszka, R. Walendziak, and M. Lewandowski. 2020. Radiation induced strength enhancement of sulfur polymer concrete composites based on waste and residue fillers. Journal of Cleaner Production 271:122563. doi:10.1016/j.jclepro.2020.122563.
  • Tencom Ltd. 2022. Creating cross arm structures for transmission towers with FRP. Accessed June 28, 2023. https://www.tencom.com/blog/creating-cross-arm-structures-for-transmission-towers-with-frp.
  • Tunje, C., R. Onchiri, and J. Thuo. 2021. Concrete microstructure study on the effect of sisal fiber addition on sugarcane bagasse ash concrete. The Open Civil Engineering Journal 15 (1):320–29. doi:10.2174/1874149502115010320.
  • Ude, A. U., A. K. Ariffin, and C. H. Azhari. 2013. An experimental investigation on the response of woven natural silk fiber/epoxy sandwich composite panels under low velocity impact. Fibers and Polymers 14 (1):127–32. doi:10.1007/s12221-013-0127-2.
  • Wang, W., Z. Mo, Y. Zhang, and N. Chouw. 2022. Dynamic splitting tensile behaviour of concrete confined by natural flax and glass FRP. Polymers 14 (20):4424. doi:10.3390/polym14204424.
  • Wang, B., S. Zhong, T.-L. Lee, K. S. Fancey, and J. Mi. 2020. Non-destructive testing and evaluation of composite materials/structures: a state-of-the-art review. Advances in Mechanical Engineering 12 (4):168781402091376. doi:10.1177/1687814020913761.
  • Withers, P. J., C. Bouman, S. Carmignato, V. Cnudde, D. Grimaldi, C. K. Hagen, E. Maire, M. Manley, A. Du Plessis, and S. R. Stock. 2021. X-ray computed tomography. Nature Reviews Methods Primers 1 (1):18. doi:10.1038/s43586-021-00015-4.
  • Yan, L., and N. Chouw. 2015. Effect of water, seawater and alkaline solution ageing on mechanical properties of flax fabric/epoxy composites used for civil engineering applications. Construction and Building Materials 99:118–27. doi:10.1016/j.conbuildmat.2015.09.025.
  • Yang, J., C. Zheng, S. Xu, C. Wei, C. Zhang, Y. Bi, and X. Li. 2023. Irradiation effects of carbon fibers in C/SiC composites. Materials Characterization 196:112638. doi:10.1016/j.matchar.2022.112638.
  • Yousefi, M., R. Khandestani, and N. Gharaei-Moghaddam. 2022. Flexural behavior of reinforced concrete beams made of normal and polypropylene fiber-reinforced concrete containing date palm leaf ash. Structures 37:1053–68. doi:10.1016/j.istruc.2022.01.067.
  • Zhu, J. J., and M. S. Schoenoff. 2018. Effects of natural sunlight on fiberglass reinforced polymers for crossarms. In: 2018 IEEE Rural Electric Power Conference (REPC), United States, 101–05. IEEE.