589
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Techno-Economic Assessment of Peruvian Stipa Ichu Microfibres by Steam Explosion

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Baral, N. R., and A. Shah. 2017. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover. Bioresource Technology. 232:331–14. Elsevier Ltd. doi:10.1016/j.biortech.2017.02.068.
  • Benini, K. C. C., H. J. Voorwald, M. O. Cioffi, M. C. Rezende, and V. Arantes. 2018. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydrate Polymers 192 (March):337–46. doi:10.1016/j.carbpol.2018.03.055.
  • Bitra, V. S. P., A. R. Womac, C. Igathinathane, and S. Sokhansanj. 2010. Knife mill comminution energy analysis of switchgrass, wheat straw, and corn stover and characterization of particle size distributions. Transactions of the ASABE 53 (5):1639–51. doi:10.13031/2013.34886.
  • Bondancia, T. J., J. De Aguiar, G. Batista, A. J. G. Cruz, J. M. Marconcini, L. C. Mattoso, and C. S. Farinas. 2020. Production of nanocellulose using citric acid in a biorefinery concept: effect of the hydrolysis reaction time and techno-economic analysis. Industrial and Engineering Chemistry Research 59 (25):11505–16. doi:10.1021/acs.iecr.0c01359.
  • Bonfiglio, F., S. I. Mussatto, and P. Menéndez. 2019. Utilización de Biomasa Lignocelulósica Pretratada Con Explosión Por Vapor Para Producción de Etanol y Coproductos de Alto Valor Agregado. https://catalogo.latu.org.uy/opac_css/doc_num.php?explnum_id=2833.
  • Carvalho, D. M., J. H. Queiroz, and J. L. Colodette. 2017. Hydrothermal and acid pretreatments improve ethanol production from lignocellulosic biomasses. BioResources 12 (2). https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_12_2_3088_Carvalho_Hydrothermal_Acid_Pretreatments_Ethanol
  • Chaker, A., S. Alila, P. Mutjé, M. R. Vilar, and S. Boufi. 2013. Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20 (6):2863–75. doi:10.1007/s10570-013-0036-y.
  • Cheng, B., X. Zhang, Q. Lin, F. Xin, R. Sun, X. Wang, and J. Ren. 2018. A new approach to recycle oxalic acid during lignocellulose pretreatment for xylose production. Biotechnology for Biofuels. 11 (1):1–9. BioMed Central. doi:10.1186/s13068-018-1325-3.
  • Cherian, B. M., A. L. Leão, S. Ferreira de Souza, S. Thomas, L. A. Pothan, and M. Kottaisamy. 2010. Isolation oF nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers. 81 (3):720–25. Elsevier. doi:10.1016/j.carbpol.2010.03.046.
  • Da Costa Lopes, A. M. 2021. Biomass delignification with green solvents towards lignin valorisation: ionic liquids vs deep eutectic solvents. research and innovation centre pro-akademia. Acta Innovations (40):64–78. doi:10.32933/ActaInnovations.40.5.
  • De Assis, C. A., C. Houtman, R. Phillips, E. M. (Ted) Bilek, O. J. Rojas, L. Pal, M. S. Peresin, H. Jameel, and R. Gonzalez. 2017. Conversion economics of forest biomaterials: risk and financial analysis of CNC manufacturing. Biofuels, Bioproducts and Biorefining 11 (4):682–700. doi:10.1002/bbb.1782.
  • De Assis, C. A., M. C. Iglesias, M. Bilodeau, D. Johnson, R. Phillips, M. S. Peresin, E. M. Bilek, O. J. Rojas, R. Venditti, and R. Gonzalez. 2018. Cellulose Micro- and Nanofibrils (CMNF) Manufacturing - Financial and risk assessment. Biofuels, Bioproducts and Biorefining. 12 (2):251–64. John Wiley and Sons Ltd. doi:10.1002/bbb.1835.
  • De Carvalho, D. M., O. Sevastyanova, L. S. Penna, B. P. da Silva, M. E. Lindström, and J. L. Colodette. 2015. Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Industrial Crops and Products 73:118–26. doi:10.1016/j.indcrop.2015.04.021.
  • De Corato, U., N. Sharma, and F. Zimbardi. 2011. Use of waste vegetable biomasses treated by steam explosion for the horticultural crop protection. Journal of Agricultural Science & Technology 1 (June 2018):540–49.
  • Deepa, B., E. Abraham, B. M. Cherian, A. Bismarck, J. J. Blaker, L. A. Pothan, A. L. Leao, S. F. de Souza, and M. Kottaisamy. 2011. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technology 102 (2):1988–97. doi:10.1016/j.biortech.2010.09.030.
  • Garrote, G., and J. C. Parajó. 2002. Non-isothermal autohydrolysis of eucalyptus wood. Wood Science and Technology 36 (2):111–23. doi:10.1007/s00226-001-0132-2.
  • Gemmer, R. E., C. Borsoi, B. Hansen, M. A. Júnior, E. L. Francisquetti, L. V. Beltrami, A. J. Zattera, and A. L. Catto. 2021. Extraction oF nanocellulose from yerba mate residues using steam explosion, TEMPO-mediated oxidation and ultra-fine friction grinding. Journal of Natural Fibers 1–11. November, Taylor & Francis. 10.1080/15440478.2021.1994095
  • Huang, H., Q. Tang, G. Lin, Y. Liu, J. Yu, B. Ding, and Z. Li. 2022. Anthraquinone-assisted deep eutectic solvent degumming of ramie fibers: evaluation of fiber properties and degumming performance. Industrial Crops and Products 185:115115. doi:10.1016/j.indcrop.2022.115115.
  • Hu, Z., R. Sykes, M. F. Davis, E. C. Brummer, and A. J. Ragauskas. 2010. Chemical profiles of switchgrass. Bioresource Technology. 101 (9):3253–57. England. doi:10.1016/j.biortech.2009.12.033.
  • IISD. 2016. Environmental impact assessment training manual, 1–178. Winnipeg, Manitoba, Canada: International Institute for Sustainable Development. www.iisd.org.
  • Jiang, J., Y. Zhu, and F. Jiang. 2021. Sustainable isolation of nanocellulose from cellulose and lignocellulosic feedstocks: recent progress and perspectives. Carbohydrate Polymers. 267 (September):118188. Elsevier. doi:10.1016/J.CARBPOL.2021.118188.
  • Kaushik, A., and M. Singh. 2011. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate Research 346 (1):76–85. doi:10.1016/j.carres.2010.10.020.
  • Laboratory Supply Network, Inc. 2021. Q2000 sonicator - industrial-scale ultrasonic homogenizer | Homogenizers.Net. Accessed November 7. https://homogenizers.net/collections/sonic-homogenizers-sonicators/products/q2000-sonicator.
  • Lam, P. S. W., S. Sokhansanj, J. Lim, X. Bi, and S. Melin. 2009. Kinetic modeling of pseudolignin formation in steam exploded woody biomass. Conference Proceeding of 8th World Congress of Chemical Engineering, 1001, place Jean-Paul-Riopelle Montreal, Canada.
  • Li, J., G. Henriksson, and G. Gellerstedt. 2007. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technology 98 (16):3061–68. doi:10.1016/j.biortech.2006.10.018.
  • Li, Z., C. Meng, and C. Yu. 2015. Analysis of oxidized cellulose introduced into ramie fiber by oxidation degumming. Textile Research Journal 85 (20):2125–35. doi:10.1177/0040517515581589.
  • Lindstrom, J. K., J. L. Brown, C. A. Peterson, A. Ghosh, S. A. Rollag, P. D. Kouris, M. D. Boot, E. J. M. Hensen, P. Gable, R. G. Smith, et al. 2021. A novel semi-batch autoclave reactor to overcome thermal dwell time in solvent liquefaction experiments. Chemical Engineering Journal 417 (December 2020):128074. Elsevier B.V. doi:10.1016/j.cej.2020.128074.
  • Lin, Q., N. Ji, M. Li, L. Dai, X. Xu, L. Xiong, and Q. Sun. 2020. Fabrication of debranched starch nanoparticles via reverse emulsification for improvement of functional properties of corn starch films. Food Hydrocolloids 104 (July):105760. Elsevier. doi:10.1016/J.FOODHYD.2020.105760.
  • Lin, G., Q. Tang, H. Huang, J. Yu, Z. Li, and B. Ding. 2022. Process optimization and comprehensive utilization of recyclable deep eutectic solvent for the production of ramie cellulose fibers. Cellulose 29 (7):3689–701. doi:10.1007/s10570-022-04501-0.
  • Liu, Q., Y. Lu, M. Aguedo, N. Jacquet, C. Ouyang, W. He, C. Yan, W. Bai, R. Guo, D. Goffin, et al. 2017. Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and microfluidization. ACS Sustainable Chemistry & Engineering 5 (7):6183–91. American Chemical Society. doi:10.1021/acssuschemeng.7b01108.
  • Lopes, T. F., and R. M. Lukasik. 2020. Economic, social and environmental impacts attained by the use of the effluents generated within a small-scale biorefinery concept. Acta Innovations (36) September: 57–63. Research and Innovation Centre Pro-Akademia. 10.32933/ActaInnovations.36.5
  • Louis, A. C. F., S. Venkatachalam, and S. Gupta. 2022. Innovative strategy for rice straw valorization into nanocellulose and nanohemicellulose and its application. Industrial Crops and Products 179 (May):114695. Elsevier. doi:10.1016/J.INDCROP.2022.114695.
  • Manhas, N., K. Balasubramanian, P. Prajith, P. Rule, and S. Nimje. 2015. PCL/PVA nanoencapsulated reinforcing fillers of steam exploded/autoclaved cellulose nanofibrils for tissue engineering applications. RSC Advances. 5 (31):23999–4008. Royal Society of Chemistry. doi:10.1039/c4ra17191h.
  • McCabe, W. L., and J. C. Smith. 2016. Operaciones Básicas de Ingeniería Química, vol. 2. Barcelona, España: Editorial Reverté, S. A.
  • Miller, J. 2018. Nanocellulose: producers, products, and applications a guide for end users. TAPPI. https://imisrise.tappi.org/TAPPI/Products/01/R/0101R350.aspx.
  • Moraes, C. A. M., I. J. Fernandes, D. Calheiro, A. G. Kieling, F. A. Brehm, M. R. Rigon, J. A. Filho, I. A. Schneider, and E. Osorio. 2014. Review of the rice production cycle: by-products and the main applications focusing on rice husk combustion and ash recycling. Waste Management & Research: The Journal of the International Solid Wastes & Public Cleansing Association, ISWA 32 (11):1034–48. Waste Manag Res. doi:10.1177/0734242X14557379.
  • Mori, S., C. Tenazoa, S. Candiotti, E. Flores, and S. Charca. 2020. Assessment of ichu fibers extraction and their use as reinforcement in composite materials. Journal of Natural Fibers. 17 (5):700–15. Taylor & Francis. doi:10.1080/15440478.2018.1527271.
  • Nanografi Nano Technology. 2022. Nanofibrillated cellulose (cellulose nanofibril). https://nanografi.com/popular-products/cellulose-nanofiber-cellulose-nanofibril-nanofibrillated-cellulose-cnfs/.
  • Naveda Rengifo, R. A., P. A. Montalvo, L. F. Del Pino, and L. V. Figueroa. 2019. Análisis Multivariado de La Influencia de La Explosión de Vapor Sobre La Cascarilla de Arroz. Anales Científicos 80 (2):569. doi:10.21704/ac.v80i2.1492.
  • Oyeoka, H. C., C. M. Ewulonu, I. C. Nwuzor, C. M. Obele, and J. T. Nwabanne. 2021. Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals. Journal of Bioresources and Bioproducts 6 (2):168–85. Elsevier B.V. doi:10.1016/j.jobab.2021.02.009.
  • Peters, M. S., K. D. Timmerhaus, and R. E. West. 2003. Plant design and economics for chemical engineers. McGraw-Hill Chemical Engineering Series. McGraw-Hill Education. https://books.google.com.pe/books?id=3uVFkBBHyP8C.
  • Relvas, F. M., A. R. C. Morais, and R. Bogel-Lukasik. 2015. Kinetic modeling of hemicellulose-derived biomass hydrolysis under high pressure CO2-H2O mixture technology. The Journal of Supercritical Fluids. 99:95–102. Elsevier. doi:10.1016/j.supflu.2015.01.022.
  • Seider, W. D., J. D. Seader, D. R. Lewin, and S. Widagdo. 2017. Annual costs, earnings, and profitability analysis. In Product and process design principles, 4th ed., vol. 604. New York: John Wiley & Sons Incorporated.
  • Serra, A., I. González, H. Oliver-Ortega, Q. Tarrès, M. Delgado-Aguilar, and P. Mutjé. 2017. Reducing the amount of catalyst in TEMPO-oxidized cellulose nanofibers: effect on properties and cost. Polymers 9 (11):557. doi:10.3390/polym9110557.
  • Sheldon, R. A. 2007. The E factor: fifteen years on. Green Chemistry 9 (12):1273–83. doi:10.1039/b713736m.
  • Shen, P., P. Shen, Q. Tang, X. Chen, and Z. Li. 2022. Nanocrystalline cellulose extracted from bast fibers: preparation, characterization, and application. Carbohydrate Polymers 290:119462–2022 v.290. doi:10.1016/j.carbpol.2022.119462.
  • Silveira, M. H. L., A. R. C. Morais, A. M. C. Lopes, D. N. Olekszyszen, R. Bogel-Łukasik, J. Andreaus, and L. P. Ramos. 2015. Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSuschem 8 (20):3366–90. doi:10.1002/cssc.201500282.
  • Sinnott, R., and G. Towler. 2019. Chemical engineering. Design: SI Edition. Butterworth-Heinemann.
  • Stelte, W. 2013. Steam explosion for biomass pre-treatment. Gregersensvej 2C DK-2630 Taastrup: Danish Technological Institute.
  • Tabil, L., P. Adapa, and M. Kashaninej. 2011. Biomass feedstock pre-processing – Part 1: pre-treatment. Biofuel’s Engineering Process Technology. InTech. doi:10.5772/17086.
  • Tanpichai, S., A. Boonmahitthisud, and S. Witayakran. 2019. Use of steam explosion as a green alternative method to prepare pulp from pineapple leaves. Journal of Metals, Materials and Minerals 29 (2):110–14. Chulalognkorn University. doi:10.14456/jmmm.2019.26.
  • Tenazoa, C., H. Savastano, S. Charca, M. Quintana, and E. Flores. 2021. The effect of alkali treatment on chemical and physical properties of Ichu and cabuya fibers. Journal of Natural Fibers 18 (7):923–36. doi:10.1080/15440478.2019.1675211.
  • Tramper, A. C. Y. J. 2004. Production Yield Analysis in Food Processing Applications. https://edepot.wur.nl/121537.
  • Vanhatalo, K. M., K. E. Parviainen, and O. P. Dahl. 2014. Techno-economic analysis of simplified microcrystalline cellulose process. BioResources 9(3). (2014), June. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_09_3_4741_Vanhatalo_Techno_Economic_Analysis/2884.
  • Wang, L., X. Zhu, X. Chen, Y. Zhang, H. Yang, Q. Li, and J. Jiang. 2022. Isolation and characteristics of nanocellulose from hardwood pulp via phytic acid pretreatment. Industrial Crops and Products 182(August) Elsevier B.V.:114921. doi: 10.1016/J.INDCROP.2022.114921.
  • Yang, W., Y. Feng, H. He, and Z. Yang. 2018. Environmentally-friendly extraction of cellulose nanofibers from steam-explosion pretreated sugar beet pulp. Materials 11 (7):1107–60. doi:10.3390/ma11071160.
  • Zimbardi, F., E. Ricci, and G. Braccio. 2002. Technoeconomic study on steam explosion application in biomass processing. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology 98–100 (1–9):89–100. doi:10.1385/ABAB:98-100:1-9:89.