414
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of Hydroxyl-Terminated Hyperbranched Polymer and Coupling Agent on the Performance of SF/PLA Composites

, , , , , , , & show all

References

  • Aguado, R. J., G. A. Bastida, F. X. Espinach, J. Llorens, Q. Tarres, M. Delgado-Aguilar, and P. Mutje. 2023. Comparative study on the stiffness of poly (lactic acid) reinforced with untreated and bleached hemp fibers. Polymers 15:13. doi:10.3390/polym15132960.
  • Arif, Z. U. 2022. Mcpolymeric sustainable materials and their emerging applications. Journal of Environmental Chemical Engineering 10 (4):108159. doi:10.1016/j.jece.2022.108159.
  • Asyraf, M. R., M. R. Ishak, M. N. Norrrahim, N. M. Nurazzi, S. S. Shazleen, R. A. Ilyas, M. Rafidah, and M. R. Razman. 2021. Recent advances of thermal properties of sugar palm lignocellulosic fibre reinforced polymer composites. International Journal of Biological Macromolecules 193 (PtB):1587–15. doi:10.1016/j.ijbiomac.2021.10.221.
  • Asyraf, M. R. M., M. Rafidah, A. Azrina, and M. R. Razman. 2021. Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: A comprehensive review on chemical treatments. Cellulose 28 (5):2675–95. doi:10.1007/s10570-021-03710-3.
  • Asyraf, M. R., A. Syamsir, N. M. Zahari, A. B. Supian, M. R. Ishak, S. M. Sapuan, S. Sharma, A. Rashedi, M. R. Razman, S. Z. Zakaria, et al. 2022. Product development of natural fibre-composites for various applications: Design for sustainability. Polymers 14:5. doi:10.3390/polym14050920.
  • Bledzki, A. K., and J. Gassan. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science 24 (2):221–74. doi:10.1016/S0079-6700(98)00018-5.
  • Chen, K., L. Ping, L. Xingong, C. Liao, L. Xianjun, and Y. Zuo. 2021. Effect of silane coupling agent on compatibility interface and properties of wheat straw/polylactic acid composites. International Journal of Biological Macromolecules 182:2108–16. doi:10.1016/j.ijbiomac.2021.05.207.
  • Chin-San, W., W. Dung-Yi, and S.-S. Wang. 2022. Preparation and characterization of polylactic acid/bamboo fiber composites. ACS Applied Bio Materials 5 (3):1038–46. doi:10.1021/acsabm.1c01082.
  • Faruk, O., K. Andrzej, H. P. F. Bledzki, and S. Mohini. 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in polymer science 37 (11):1552–96. doi:10.1016/j.progpolymsci.2012.04.003.
  • Guili, L., M. Hao, Y. Chen, L. Haimei, and J. Lin. 2022. Nonisothermal crystallization behavior and mechanical properties of poly(lactic acid)/ramie fiber biocomposites. Polymer Composites 43 (5):2759–70. doi:10.1002/pc.26572.
  • Hýsková, P., Š. Hýsek, O. Schönfelder, P. Šedivka, M. Lexa, and V. Jarský. 2020. Utilization of agricultural rests: Straw-based composite panels made from enzymatic modified wheat and rapeseed straw. Industrial Crops and Products 144:112067. doi:10.1016/j.indcrop.2019.112067.
  • Kalia, S., B. S. Kaith, and K. Inderjeet. 2009. Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review.Polymer Engineering &. Science 49 (7):1253–72. doi:10.1002/pen.21328.
  • Ku, H., H. Wang, N. Pattarachaiyakoop, and M. Trada. 2011. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B Engineering 42 (4):856–73. doi:10.1016/j.compositesb.2011.01.010.
  • Lu, S. R., R. H. Ling, C. X. Luo, S. R. Li, and B. Huang. 2013. Sisal fibre/polypropylene composites modified with carboxyl terminated hyperbranched polymer. Plastics, Rubber & Composites 42 (9):361–66. doi:10.1179/1743289812Y.0000000040.
  • Luo, Q., L. Yuqi, L. Ren, X. Xu, and L. Shaorong. 2018. Hyperbranched liquid crystals modified with sisal cellulose fibers for reinforcement of epoxy composites. Polymers 10 (9):1024. doi:10.3390/polym10091024.
  • Mahmud, M. A., N. Abir, F. R. Anannya, A. Nabi Khan, A. Rahman, and N. Jamine. 2023. Coir fiber as thermal insulator and its performance as reinforcing material in biocomposite production. Heliyon 9 (5):e15597. doi:10.1016/j.heliyon.2023.e15597.
  • Mahmud, S., K. M. Faridul Hasan, A. J. Md, M. Kazi, Z. Ruoyu, and Z. Jin. 2021. Comprehensive review on plant fiber-reinforced polymeric biocomposites. Journal of Materials Science 56 (12):7231–64. doi:10.1007/s10853-021-05774-9.
  • Mahmud, S., L. Yu, W. Jinggang, D. Jinyue, Z. Ruoyu, and Z. Jin. 2020. Waste Cellulose Fibers Reinforced Polylactide Toughened by Direct Blending of Epoxidized Soybean Oil. Fibers and Polymers 21 (12):2949–61. doi:10.1007/s12221-020-0111-6.
  • Mohanty, A. K., S. Vivekanandhan, J.-M. Pin, and M. Misra. 2018. Composites from renewable and sustainable resources: Challenges and innovations. Science 362 (6414):536–42. doi:10.1126/science.aat9072.
  • Mohsin, E., M. Muzammil Azad, S. K. A. Atta Ur Rehman Shah, J.-I. Song, and J.-I. Song. 2020. Mechanical and biodegradable properties of jute/flax reinforced PLA composites. Fibers and Polymers 21 (11):2635–41. doi:10.1007/s12221-020-1370-y.
  • Nurazzi, N. M., M. R. Asyraf, A. S. Fatimah, S. S. Shazleen, S. A. Rafiqah, M. M. Harussani, S. H. Kamarudin, M. R. Razman, M. Rahmah, E. S. Zainudin, et al. 2021. A review on mechanical performance of hybrid natural fiber polymer composites for structural applications. Polymers 13:13. doi:10.3390/polym13132170.
  • Qi, Z., B. Wang, C. Sun, M. Yang, X. Chen, D. Zheng, W. Yao, Y. Chen, R. Cheng, and Y. Zhang. 2022. Comparison of properties of poly (lactic acid) composites prepared from different components of corn straw fiber. International Journal of Molecular Sciences 23 (12). doi: 10.3390/ijms23126746.
  • Rajeshkumar, G., S. Arvindh Seshadri, G. L. Devnani, M. R. Sanjay, S. Siengchin, J. Prakash Maran, N. A. Al-Dhabi, P. Karuppiah, V. A. Mariadhas, and N. Sivarajasekar. 2021. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – a comprehensive review. Journal of Cleaner Production 310:310. doi:10.1016/j.jclepro.2021.127483.
  • Ramachandran, A., S. Mavinkere Rangappa, V. Kushvaha, A. Khan, S. Seingchin, and H. N. Dhakal. 2022. Modification of fibers and matrices in natural fiber reinforced polymer composites: A comprehensive review. Macromolecular Rapid Communications 43 (17). doi:10.1002/marc.202100862.
  • Robledo-Ortiz, J. R., A. S. Martin Del Campo, J. A. Blackaller, M. E. Gonzalez-Lopez, and A. A. Perez Fonseca. 2021. Valorization of sugarcane straw for the development of sustainable biopolymer-based composites. Polymers 13 (19):19. doi:10.3390/polym13193335.
  • Sakil, M., L. Yu, Y. Yong, H. Juncheng, Z. Ruoyu, and Z. Jin. 2019. The Consequence of Epoxidized Soybean Oil in the Toughening of Polylactide and Micro-Fibrillated Cellulose Blend. Polymer Science, Series A 61 (6):832–46. doi:10.1134/S0965545X2001006X.
  • Shaorong, L., L. Shanrong, Y. Jinhong, D. Guo, R. Ling, and B. Huang. 2013. The effect of hyperbranched polymer lubricant as a compatibilizer on the structure and properties of lignin/polypropylene composites. Wood Material Science & Engineering 8 (3):159–65. doi:10.1080/17480272.2013.769464.
  • Sherwani, S. F. K., S. M. Sapuan, Z. Leman, E. S. Zainudin, and A. Khalina. 2021. Physical, mechanical and morphological properties of sugar palm fiber reinforced polylactic acid composites. Fibers and Polymers 22 (11):3095–105. doi:10.1007/s12221-021-0407-1.
  • Shuiping, L., Q. Lin, H. Hou, H. Zhu, L. Yanbo, W. Qisheng, and C. Cui. 2016. Mechanical characterization of epoxy composites with glass fibers grafted by hyperbranched polymer with amino terminal groups. Polymer Bulletin 73 (11):2947–60. doi:10.1007/s00289-016-1633-3.
  • Shuiping, L., Q. Lin, H. Zhu, C. Cui, H. Hou, L. Tingting, and L. Yanbo. 2016. Investigations on mechanical characteristics of glass fiber reinforced epoxy composite modified with amino-terminated hyperbranched polymer. Fibers and Polymers 17 (2):282–88. doi:10.1007/s12221-016-5611-z.
  • Sun, Z. 2019. Hyperbranched polymers in modifying natural plant fibers and their applications in polymer matrix composites - a review. Journal of Agricultural and Food Chemistry 67 (32):8715–24. doi:10.1021/acs.jafc.9b03436.
  • Sun, Z., Y. Fengqiang, and X. Zhao. 2018. Effect of grafting generations of poly(amidoamine) dendrimer from the sisal fiber surface on the mechanical properties of composites. Journal of Natural Fibers 15 (6):896–905. doi:10.1080/15440478.2017.1376304.
  • Wambua, P., I. Jan, and V. Ignaas. 2003. Natural fibres: can they replace glass in fibre reinforced plastics?. Composites Science and Technology 63 (9):1259–64. doi:10.1016/S0266-3538(03)00096-4.
  • Zhang, X., J. Duan, G. Zhuo, L. Hui, J. Lyu, and D. Jingjing. 2022. Nano silicon carbide-treated wheat straw fiber reinforced high-density polyethylene composites. Industrial Crops and Products 182:114834. doi:10.1016/j.indcrop.2022.114834.
  • Zhao, X., Z. Sun, and A. Tang. 2022. Effects of hyperbranched polyamide on the properties of sisal fiber reinforced polypropylene composites. Journal of Natural Fibers 19 (5):1690–99. doi:10.1080/15440478.2020.1787923.