376
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Screening and Identification of Cinnamoyl CoA Reductase Genes Associated with Lignin Synthesis and Abiotic Stress in Boehmeria nivea

, , , , &

References

  • Anterola, A. M., and N. G. Lewis. 2002. Trends in lignin modification: A comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–17. doi:10.1016/S0031-9422(02)00211-X.
  • Baltas, M., C. Lapeyre, F. Bedos-Belval, M. Maturano, P. Saint-Aguet, L. Roussel, H. Duran, and J. Grima-Pettenati. 2005. Kinetic and inhibition studies of cinnamoyl-CoA reductase 1 from Arabidopsis thaliana. Plant Physiology and Biochemistry 43:746–53. doi:10.1016/j.plaphy.2005.06.003.
  • Bang, S. W., S. Choi, X. Jin, S. E. Jung, J. W. Choi, J. S. Seo, and J. K. Kim. 2022. Transcriptional activation of rice CINNAMOYL-CoA REDUCTASE 10 by OsNAC5, contributes to drought tolerance by modulating lignin accumulation in roots. Plant Biotechnology Journal 20:736–47. doi:10.1111/pbi.13752.
  • Berthet, S., N. Demont-Caulet, B. Pollet, P. Bidzinski, L. Cezard, P. Le Bris, N. Borrega, J. Herve, E. Blondet, S. Balzergue, et al. 2011. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23:1124–37. doi:10.1105/tpc.110.082792.
  • Carocha, V., M. Soler, C. Hefer, H. Cassan-Wang, P. Fevereiro, A. A. Myburg, J. A. Paiva, and J. Grima-Pettenati. 2015. Genome-wide analysis of the lignin toolbox of Eucalyptus grandis. New Phytologist 206:1297–313. doi:10.1111/nph.13313.
  • Chao, N., W. T. Jiang, X. C. Wang, X. N. Jiang, Y. Gai, and J.-P. Schnitzler. 2019. Novel motif is capable of determining CCR and CCR-like proteins based on the divergence of CCRs in plants. Tree Physiology 39:2019–26. doi:10.1093/treephys/tpz098.
  • Chao, N., S. Li, N. Li, Q. Qi, W. T. Jiang, X. N. Jiang, and Y. Gai. 2017a. Two distinct cinnamoyl-CoA reductases in Selaginella moellendorffii offer insight into the divergence of CCRs in plants. Planta 246:33–43. doi:10.1007/s00425-017-2678-8.
  • Chao, N., N. Li, Q. Qi, S. Li, T. Lv, X. Jiang, and Y. Gai. 2017b. Characterization of the cinnamoyl-CoA reductase (CCR) gene family in Populus tomentosa reveals the enzymatic active sites and evolution of CCR. Planta 245:61–75. doi:10.1007/s00425-016-2591-6.
  • Chen, K., Y. Ming, M. B. Luan, P. Chen, H. P. Xiong, J. K. Chen, B. Wu, M. Z. Bai, G. Gao, Q. Q. Zhang, et al. 2023. The chromosome-level assembly of ramie (Boehmeria Nivea L.) genome provides insights into molecular regulation of fiber fineness. Journal of Natural Fibers 20 (1):2168819. doi:10.1080/15440478.2023.2168819.
  • Chen, J., A. Zhu, and H. Xiong. 2020. Progresses and strategies of science of ramie farming system in China. Plant Fiber Sciences in China 42 (1):43–48. -6/-54:40(0101) 1-51124516.
  • Chu, C., Y. Du, X. Yu, J. Shi, X. Yuan, X. Liu, Y. Liu, H. Zhang, Z. Zhang, and N. Yan. 2020. Dynamics of antioxidant activities, metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice (Zizania latifolia). Food Chemistry 318:126483. doi:10.1016/j.foodchem.2020.126483.
  • Cui, W., Z. Zhuang, P. Jiang, J. Pan, G. Zhao, S. Xu, and W. Shen. 2022. Characterization, expression profiling, and biochemical analyses of the cinnamoyl-CoA reductase gene family for lignin synthesis in alfalfa plants. International Journal of Molecular Sciences 23:7762. doi:10.3390/ijms23147762.
  • Dardick, C. D., A. M. Callahan, R. Chiozzotto, R. J. Schaffer, M. C. Piagnani, and R. Scorza. 2010. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biology 8:13. doi:10.1186/1741-7007-8-13.
  • Escamilla-Trevino, L. L., H. Shen, S. R. Uppalapati, T. Ray, Y. Tang, T. Hernandez, Y. Yin, Y. Xu, and R. A. Dixon. 2010. Switchgrass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties. The New Phytologist 185:143–55. doi:10.1111/j.1469-8137.2009.03018.x.
  • Guex, N., A. Diemand, M. C. Peitsch, and T. Schwede. 2017. The SIB Swiss Institute of Bioinformatics Presents: Swiss-PdbViewerDeepView v4.10. Swiss Institute of Bioinformatics, Biozentrum, Basel.
  • Guo, Y., H. Xu, Y. Zhao, H. Wu, and J. Lin. 2020. Plant lignification and its regulation. Scientia Sinica Vitae 50:111–22. doi:10.1360/SSV-2019-0204.
  • Hori, C., X. Yu, J. C. Mortimer, R. Sano, T. Matsumoto, J. Kikuchi, T. Demura, and M. Ohtani. 2020. Impact of abiotic stress on the regulation of cell wall biosynthesis in Populus trichocarpa. Plant Biotechnology (Tokyo) 37:273–83. doi:10.5511/plantbiotechnology.20.0326a.
  • Lauvergeat, V., C. Lacomme, E. Lacombe, E. Lasserre, D. Roby, and J. Grima-Pettenati. 2001. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57:1187–95. doi:10.1016/s0031-9422(01)00053-x.
  • Li, Y. 2017. Screening of high cd accumulation germplasms and physiological analysis of cd tolerance in ramie (boehmeria niveaL). Chinese Academy of Agricultural Sciences 1–57.
  • Liu, D., J. Wu, L. Lin, P. Li, S. Li, Y. Wang, J. Li, Q. Sun, J. Liang, and Y. Wang. 2021. Overexpression of cinnamoyl-CoA reductase 2 in Brassica napus increases resistance to Sclerotinia sclerotiorum by affecting lignin biosynthesis. Frontiers in Plant Science 12:732733. doi:10.3389/fpls.2021.732733.
  • Liu, F., Y. Xue, X. Chen, S. Liu, Y. Zhang, Z. Ren, K. Li, Y. Tong, L. Ren, and Y. Li. Study on process performance of ramie fiber anaerobic biological degumming system. 2020. Journal of Textile Research 41:89–94. doi:10.13475/j.fzxb.20191204906.
  • Liu, C., L. B. Zeng, S. Y. Zhu, L. Q. Wu, Y. Z. Wang, S. W. Tang, H. W. Wang, X. Zheng, J. Zhao, X. R. Chen, et al. 2018. Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmeria nivea L. Gaud). DNA Research 25 (2):173–81. doi:10.1093/dnares/dsx047.
  • Luan, M. B., J. B. Jian, P. Chen, J. H. Chen, J. Chen, Q. Gao, G. Gao, J. H. Zhou, K. M. Chen, X. M. Guang, et al. 2018. Draft genome sequence of ramie, boehmeria nivea (L.) Gaudich. Molecular Ecology Resources 18:639–45. doi:10.1111/1755-0998.12766.
  • Ma, Q. 2007. Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. Journal of Experimental Botany 58:2011–21. doi:10.1093/jxb/erm064.
  • National hemp industry technology system. 2017. Research on sustainable development strategy of modern agricultural industry in China, bast fiber division. Beijing: China Agriculture Press 3−38: 123–46.
  • Neutelings, G. 2011. Lignin variability in plant cell walls: Contribution of new models. Plant Science 181:379–86. doi:10.1016/j.plantsci.2011.06.012.
  • Ni, M. 2019. Cloning and characterization of cinnamoyl CoA reductase gene and analysis of their relationship with spicy from Capsicum chinense Jacquin. Hainan University 1−82: 5–6.
  • Pan, H., R. Zhou, G. V. Louie, J. K. Mühlemann, E. K. Bomati, M. E. Bowman, N. Dudareva, R. A. Dixon, J. P. Noel, and X. Wang. 2014. Structural studies of cinnamoyl-CoA reductase and Cinnamyl-Alcohol dehydrogenase, key enzymes of monolignol biosynthesis. The Plant Cell 26:3709–27. doi:10.1105/tpc.114.127399.
  • Park, H. L., S. H. Bhoo, M. Kwon, S. W. Lee, and M. H. Cho. 2017. Biochemical and expression analyses of the rice cinnamoyl-CoA reductase gene family. Front Plant Science 8:2099. doi:10.3389/fpls.2017.02099.
  • Raes, J., A. Rohde, J. H. Christensen, Y. V. D. Peer, and W. Boerjan. 2003. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiology (Bethesda) 133:1051–71. doi:10.1104/pp.103.026484.
  • Rehman, M., D. Gang, Q. Liu, Y. Chen, B. Wang, D. Peng, and L. Liu. 2019. Ramie, a multipurpose crop: Potential applications, constraints and improvement strategies. Industrial Crops and Products 137:300–07. doi:10.1016/j.indcrop.2019.05.029.
  • Sattler, S. A., A. M. Walker, W. Vermerris, S. E. Sattler, and C. Kang. 2017. Structural and biochemical characterization of cinnamoyl-CoA reductases. Plant Physiology 173:1031–44. doi:10.1104/pp.16.01671.
  • Shi, R., Y. H. Sun, Q. Li, S. Heber, R. Sederoff, and V. L. Chiang. 2010. Towards a systems approach for lignin biosynthesis in populus trichocarpa: Transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiology 51:144–63. doi:10.1093/pcp/pcp175.
  • So, H., E. Chung, C. Cho, K. Kim, and J. Lee. 2010. Molecular cloning and characterization of soybean cinnamoyl CoA reductase induced by abiotic stresses. Plant Pathology Journal 26 (4):380–85. doi:10.5423/PPJ.2010.26.4.380.
  • Tamura, K., G. Stecher, S. Kumar, and F. U. Battistuzzi. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022–27. doi:10.1093/molbev/msab120.
  • Tang, Y., F. Liu, J. Chen, K. Mao, H. Li, and H. Wan. 2022. Biochemical characteristics and expression differences of three members of CCRs in ramie (boehmeria nivea). Acta Agronomica Sinica 48 (10):2546–59. doi:10.3724/SP.J.1006.2022.14148.
  • Tang, Y., F. Liu, H. X. J., K. Mao, G. Chen, Q. Guo, and J. Chen. 2019. “Correlation Analysis of Lignin Accumulation and Expression of Key Genes Involved in Lignin Biosynthesis of Ramie (Boehmeria Nivea).” Genes 10 (5): 389. doi:10.3390/genes10050389.
  • Tang, Y., F. Liu, K. Mao, H. Xing, J. Chen, and Q. Guo. 2018. Cloning and characterization of the key 4-coumarate CoA ligase genes in Boehmeria nivea. South African Journal of Botany 116:123–30. doi:10.1016/j.sajb.2018.02.398.
  • van der Rest, B., S. Danoun, A. M. Boudet, and S. F. Rochange. 2006. Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. Journal of Experimental Botany 57:1399–411. doi:10.1093/jxb/erj120.
  • Wang, Y., F. Li, Q. He, Z. Bao, Z. Zeng, D. An, T. Zhang, L. Yan, H. Wang, S. Zhu, et al. 2021. Genomic analyses provide comprehensive insights into the domestication of bast fiber crop ramie (boehmeria nivea). Plant Journal 107:787–800. doi:10.1111/tpj.15346.
  • Wei, X. 2016. Impacts of lignocellulose composition and features on biomass digestibility and cellulase production in Trichoderma. ressei. Huazhong Agricultural University 1−85: 33–35.
  • Wei, S., L. Wang, Y. Zhang, and D. Huang. 2013. Identification of early response genes to salt stress in roots of melon (Cucumis melo L.) seedlings. Molecular Biology Reports 40:2915–26. doi:10.1007/s11033-012-2307-3.
  • Wu, Z., Q. Tang, Y. Wang, C. Qiu, S. Long, X. Zhao, Z. Hu, and Y. Guo. 2022. Ramie (boehmeria nivea) as phytoremediation crop for heavy metal-contaminated paddy soil in southern china: Variety comparison, cd accumulation, and assessment of fiber recycling. Journal of Natural Fibers 19:11078–91. doi:10.1080/15440478.2021.2009400.
  • Xu, Y., L. Zhang, J. Qi, L. Zhang, and L. Zhang. 2021. Genomics and genetic improvement in main bast fiber crops: Advances and perspectives. Acta Agronomica Sinica 47:997–1019. doi:10.3724/SP.J.1006.2021.04121.
  • Yan, X., J. Liu, H. Kim, B. Liu, X. Huan, Z. Yang, Y. J. Lin, H. Chen, C. Yang, J. P. Wang, et al. 2019. CAD1 and CCR2 protein complex formation in monolignol biosynthesis in Populus trichocarpa. New Phytologist 222:244–60. doi:10.1111/nph.15505.
  • Yu, M., R. Zhuo, Z. Lu, S. Li, J. Chen, Y. Wang, J. Li, and X. Han. 2023. Molecular insights into lignin biosynthesis on cadmium tolerance: Morphology, transcriptome and proteome profiling in Salix matsudana. Journal Hazard Mater 441:129909. doi:10.1016/j.jhazmat.2022.129909.
  • Zhang, W., R. Wei, S. Chen, J. Jiang, H. Li, H. Huang, G. Yang, S. Wang, H. Wei, and G. Liu. 2015. Functional characterization of CCR in birch (Betula platyphylla x Betula pendula) through overexpression and suppression analysis. Physiology Plant 154:283–96. doi:10.1111/ppl.12306.
  • Zhang, X., J. Yang, Y. Wang, C. Duan, Y. Liu, and M. Lu. 2023. Study on the ramie fabric treated with copper ammonia to slenderize fiber for eliminating prickle. Journal of Natural Fibers 20:1–12. doi:10.1080/15440478.2022.2120150.
  • Zhao, Q. 2016. Lignification: Flexibility, biosynthesis and regulation. Trends in Plant Science 21:713–21. doi:10.1016/j.tplants.2016.04.006.
  • Zhao, Y., X. Yu, P. Lam, K. Zhang, Y. Tobimatsu, C. Liu, and U. N. U. S. Brookhaven National Lab. BNL. 2021. Monolignol acyltransferase for lignin p-hydroxybenzoylation in Populus. Nature plants 7: 1288–300. doi: 10.1038/s41477-021-00975-1.
  • Zhou, R., L. Jackson, G. Shadle, J. Nakashima, S. Temple, F. Chen, and R. A. Dixon. 2010. Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proceedings of the National Academy of Sciences - PNAS 107:17803–08. doi:10.1073/pnas.1012900107.