579
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development and Characterization of Sugar Palm (Arenga Pinnata (Wurmb. Merr)) Fiber Reinforced Cassava (Manihot esculenta) Starch Biopolymer Composites

, , , , , , , & show all

References

  • Abotbina, W., S. M. Sapuan, R. A. Ilyas, M. T. H. Sultan, M. F. M. Alkbir, S. Sulaiman, M. M. Harussani, and E. Bayraktar. 2022. Recent developments in cassava (Manihot Esculenta) based biocomposites and their potential industrial applications: A comprehensive review. Materials 15 (19):6992. doi:10.3390/ma15196992.
  • Abral, H., M. H. Dalimunthe, J. Hartono, R. P. Efendi, M. Asrofi, E. Sugiarti, S. M. Sapuan, J. W. Park, and H. J. Kim. 2018. “Characterization of Tapioca Starch Biopolymer Composites Reinforced with Micro Scale Water Hyacinth Fibers.” Starch‐Stärke 70 (7–8): 1700287.
  • Ayu, R. S., A. Khalina, A. Saffian Harmaen, K. Zaman, T. Isma, R. A. I. Qiuyun Liu, and C. Hao Lee. 2020. Characterization study of empty fruit bunch (EFB) fibers reinforcement in poly(Butylene) succinate (Pbs)/starch/Glycerol composite sheet. Polymers 12 (7):1571. doi:10.3390/polym12071571.
  • Azlin, M. N. M., R. A. Ilyas, M. Y. M. Zuhri, S. M. Sapuan, M. M. Harussani, S. Sharma, A. H. Nordin, N. M. Nurazzi, and A. N. Afiqah. 2022. 3D printing and shaping polymers, composites, and nanocomposites: A review. Polymers 14 (1):180. doi:10.3390/polym14010180.
  • Bootklad, M., and K. Kaewtatip. 2013. Biodegradation of thermoplastic starch/eggshell powder composites. Carbohydrate Polymers 97 (2):315–20. doi:10.1016/j.carbpol.2013.05.030.
  • Chen, S., W. Min, C. Wang, S. Yan, L. Peng, and S. Wang. 2020. Developed Chitosan/Oregano essential oil biocomposite packaging film enhanced by Cellulose Nanofibril. Polymers 12 (8):1780. doi:10.3390/polym12081780.
  • Chinma, C. E., C. Chukwuma Ariahu, and J. Oneh Abu. 2013. Chemical composition, functional and pasting properties of cassava starch and soy protein concentrate blends. Journal of Food Science and Technology 50 (6):1179–85. doi:10.1007/s13197-011-0451-8.
  • Dularia, C., A. Sinhmar, R. Thory, A. Kumar Pathera, and V. Nain. 2019. Development of starch nanoparticles based composite films from non-conventional source - water chestnut (Trapa Bispinosa). International Journal of Biological Macromolecules 136:1161–68. doi:10.1016/j.ijbiomac.2019.06.169.
  • Edhirej, A., N. I. Edhirej, S. M. Sapuan, M. Jawaid, M. J. Zahari, and N. Ismarrubie Zahari. 2017. Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch. Fibers and Polymers 18 (1):162–71. doi:10.1007/s12221-017-6251-7.
  • Edhirej, A., S. Mohd Sapuan, M. Jawaid, and N. Ismarrubie Zahari. 2017a. Cassava: Its polymer, fiber, composite, and application. Polymer Composites 38 (3):555–70. doi:10.1002/pc.23614.
  • Edhirej, A., S. Mohd Sapuan, M. Jawaid, and N. Ismarrubie Zahari. 2017b. Effect of various plasticizers and concentration on the physical, thermal, mechanical, and structural properties of cassava-starch-based films. Starch/staerke 69 (1–2):1–11. doi:10.1002/star.201500366.
  • Edhirej, A., S. M. Sapuan, M. Jawaid, and N. Ismarrubie Zahari. 2017c. Cassava/Sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. International Journal of Biological Macromolecules 101:75–83. doi:10.1016/j.ijbiomac.2017.03.045.
  • Farias, J. G. G. D., R. Cordeiro Cavalcante, B. Rodrigues Canabarro, H. Magalhães Viana, S. Scholz, and R. Antoun Simão. 2017. Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites. Carbohydrate Polymers 165:429–36. doi:10.1016/j.carbpol.2017.02.042.
  • Faruk, O., A. K. Bledzki, H.-P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science 37 (11):1552–96. doi:10.1016/j.progpolymsci.2012.04.003.
  • Galdeano, M. C., M. V. E. Grossmann, S. Mali, L. A. Bello-Perez, M. A. Garcia, and P. B. Zamudio-Flores. 2009. Effects of production process and plasticizers on stability of films and sheets of oat starch. Materials Science and Engineering C 29 (2):492–98. doi:10.1016/j.msec.2008.08.031.
  • Gürler, N., S. Paşa, Ö. Erdoğan, and O. Cevik. 2023. Physicochemical properties for food packaging and toxicity behaviors against healthy cells of environmentally friendly biocompatible Starch/Citric Acid/Polyvinyl alcohol biocomposite films. Starch/staerke 75 (3–4):1–10. doi:10.1002/star.202100074.
  • Hafila, K. Z., R. Jumaidin, R. A. Ilyas, M. Z. Selamat, and F. Asyadi Md Yusof. 2022. Effect of palm wax on the mechanical, thermal, and moisture absorption properties of thermoplastic cassava starch composites. International Journal of Biological Macromolecules 194:851–60. doi:10.1016/j.ijbiomac.2021.11.139.
  • Han, H. S., and K. Bin Song. 2021. Noni (Morinda Citrifolia) fruit polysaccharide films containing blueberry (Vaccinium Corymbosum) leaf extract as an antioxidant packaging material. Food Hydrocolloids 112 (June 2020). doi: 10.1016/j.foodhyd.2020.106372.
  • Haque, M. M., M. Rejaul Haque, M. R. Munshi, S. S. Alam, M. Hasan, M. A. Gafur, F. Rahman, M. Firdaus, and S. Ahmod. 2021. Physico-mechanical properties investigation of sponge-gourd and betel nut reinforced hybrid polyester composites. Advances in Materials and Processing Technologies 7 (2):304–16. doi:10.1080/2374068X.2020.1766298.
  • Harussani, M. M., S. M. Sapuan, A. Khalina, U. Rashid, and J. Tarique. 2021. Slow pyrolysis of disinfected COVID-19 non-woven polypropylene (PP) waste. International Symposium on Applied Sciences and Engineering ISASE2021 (May):310–12.
  • Harussani, M. M., S. M. Sapuan, U. Rashid, and A. Khalina. 2021. Development and characterization of polypropylene waste from personal protective equipment (PPE)-derived char-filled sugar palm starch biocomposite briquettes. Polymers 13 (11):1707. doi:10.3390/polym13111707.
  • Harussani, M. M., S. M. Sapuan, U. Rashid, A. Khalina, and R. A. Ilyas. 2022. Pyrolysis of polypropylene plastic waste into Carbonaceous Char: Priority of plastic waste management amidst COVID-19 pandemic. Science of the Total Environment 803:149911. doi:10.1016/j.scitotenv.2021.149911.
  • Hazrati, K. Z., S. M. Sapuan, M. Y. M. Zuhri, and R. Jumaidin. 2021. Preparation and characterization of starch-based biocomposite films reinforced by Dioscorea hispida fibers. Journal of Materials Research and Technology 15:1342–55. doi:10.1016/j.jmrt.2021.09.003.
  • Ibrahim, M. I. J., S. M. Sapuan, E. S. Zainudin, and M. Y. M. Zuhri. 2019a. Physical, thermal, morphological, and tensile properties of cornstarch-based films as affected by different plasticizers. International Journal of Food Properties 22 (1):925–41. doi:10.1080/10942912.2019.1618324.
  • Ibrahim, M. I. J., S. M. Sapuan, E. S. Zainudin, and M. Y. M. Zuhri. 2019b. Potential of using multiscale corn husk fiber as reinforcing filler in cornstarch-based biocomposites. International Journal of Biological Macromolecules 139:596–604. doi:10.1016/j.ijbiomac.2019.08.015.
  • Ilyas, R. A., S. M. Sapuan, M. S. N. Atikah, R. Ibrahim, M. D. Hazrol, S. F. K. Sherwani, T. Jamal, A. Nazrin, and R. Syafiq. 2020. “Natural fibre: A promising source for the production of nanocellulose” 2020 (November): 2–9.
  • Ilyas, R. A., S. M. Sapuan, M. R. Ishak, and E. S. Zainudin. 2018. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydrate Polymers 202 (May):186–202. doi:10.1016/j.carbpol.2018.09.002.
  • Ishak, M. R., S. M. Sapuan, Z. Leman, M. Z. A. Rahman, and U. M. K. Anwar. 2012. Characterization of sugar palm (Arenga Pinnata) fibres tensile and thermal properties. Journal of Thermal Analysis and Calorimetry 109 (2):981–89. doi:10.1007/s10973-011-1785-1.
  • Jaafar, J., J. P. Siregar, A. N. Oumer, M. H. M. Hamdan, C. Tezara, and M. S. Salit. 2018. “Experimental Investigation on Performance of Short Pineapple Leaf Fiber Reinforced Tapioca Biopolymer Composites.” BioResources 13 (3): 6341–6355.
  • Jaiswal, D., G. L. Devnani, G. Rajeshkumar, M. R. Sanjay, and S. Siengchin. 2022. Review on extraction, characterization, surface treatment and thermal degradation analysis of new cellulosic fibers as sustainable reinforcement in polymer composites. Current Research in Green and Sustainable Chemistry 5:100271. doi:10.1016/j.crgsc.2022.100271.
  • Jawaid, M., and H. P. S. Abdul Khalil. 2011. Cellulosic/Synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers 86 (1):1–18. doi:10.1016/j.carbpol.2011.04.043.
  • Jouki, M., N. Khazaei, M. Ghasemlou, and M. Hadinezhad. 2013. Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydrate Polymers 96 (1):39–46. doi:10.1016/j.carbpol.2013.03.077.
  • Jumaidin, R., Z. Asyul Sutan Saidi, R. Ahmad Ilyas, M. Nazri Ahmad, M. Khalid Wahid, M. Yuhazri Yaakob, N. Ain Maidin, M. Hidayat Ab Rahman, and M. Hairizal Osman. 2019. Characteristics of cogon grass fibre reinforced thermoplastic cassava starch biocomposite: Water absorption and physical properties. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 62 (1):43–52.
  • Jumaidin, R., M. A. A. Khiruddin, Z. A. S. Saidi, M. S. Salit, and R. A. Ilyas. 2020. “Effect of Cogon Grass Fibre on the Thermal, Mechanical and Biodegradation Properties of Thermoplastic Cassava Starch Biocomposite.” International Journal of Biological Macromolecules 146:746–755.
  • Kaisangsri, N., O. Kerdchoechuen, and N. Laohakunjit. 2012. Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Industrial Crops and Products 37 (1):542–46. doi:10.1016/j.indcrop.2011.07.034.
  • Kamaruddin, Z. H., R. Jumaidin, R. Ahmad Ilyas, M. Zulkefli Selamat, R. Hanim Alamjuri, and F. Asyadi Md Yusof. 2022. Influence of alkali treatment on the mechanical, thermal, water absorption, and biodegradation properties of Cymbopogon citratus fiber-reinforced, thermoplastic cassava starch–palm wax composites. Polymers 14 (14):2769. doi:https://doi.org/10.3390/polym14142769.
  • Kuciel, S., and A. Liber-Knec. 2009. Biocomposites on the base of thermoplastic starch filled by Wood and Kenaf Fiber. Journal of Biobased Materials and Bioenergy 3 (3):269–74. doi:10.1166/jbmb.2009.1026.
  • Ludueña, L., A. Vázquez, and V. Alvarez. 2012. Effect of lignocellulosic Filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydrate Polymers 87 (1):411–21. doi:10.1016/j.carbpol.2011.07.064.
  • Maran, J. P., V. Sivakumar, K. Thirugnanasambandham, and R. Sridhar. 2014. Degradation behavior of biocomposites based on cassava starch buried under indoor soil conditions. Carbohydrate Polymers 101:20–28. doi:10.1016/j.carbpol.2013.08.080.
  • Mohammed, A. A. B. A., Z. Hasan, A. A. B. Omran, A. M. Elfaghi, M. A. Khattak, R. A. Ilyas, and S. M. Sapuan. 2023. Effect of various plasticizers in different concentrations on physical, thermal, mechanical, and structural properties of wheat starch-based films. Polymers 15 (1):63. doi:10.3390/polym15010063.
  • Mohd Nurazzi, N., A. Khalina, S. Mohd Sapuan, and M. Rahmah. 2018. Development of sugar palm Yarn/Glass fibre reinforced unsaturated polyester hybrid composites. Materials Research Express 5 (4):045308. doi:10.1088/2053-1591/aabc27.
  • Nagarjun, J., J. Kanchana, and G. Rajesh Kumar. 2022. Improvement of mechanical properties of Coir/Epoxy composites through hybridization with sisal and Palmyra palm fibers. Journal of Natural Fibers 19 (2):475–84. doi:10.1080/15440478.2020.1745126.
  • Norizan, M. N., M. Harussani Moklis, A. Humaira Alias, A. Ilyas Rushdan, M. Nor Faiz Norrrahim, K. Abdan, and N. Abdullah. 2021. Treatments of natural fibre as reinforcement in polymer composites-short review. Functional Composites & Structures 3 (2):024002. doi:10.1088/2631-6331/abff36.
  • Nurazzi, N. M., F. A. Sabaruddin, M. M. Harussani, S. H. Kamarudin, M. Rayung, M. R. M. Asyraf, H. A. Aisyah .2021. Mechanical performance and applications of CNTs reinforced polymer composites—A review. Nanomaterials 11 (9):2186. doi:10.3390/nano11092186.
  • Panichnumsin, P., A. Nopharatana, B. Ahring, and P. Chaiprasert. 2010. Production of methane by co-digestion of Cassava Pulp with various concentrations of pig manure. Biomass and Bioenergy 34 (8):1117–24. doi:10.1016/j.biombioe.2010.02.018.
  • Podshivalov, A., M. Zakharova, E. Glazacheva, and M. Uspenskaya. 2017. Gelatin/Potato starch edible biocomposite films: Correlation between morphology and physical properties. Carbohydrate Polymers 157:1162–72. doi:10.1016/j.carbpol.2016.10.079.
  • Prachayawarakorn, J., S. Chaiwatyothin, S. Mueangta, and A. Hanchana. 2013. Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Materials & Design 47 (May):309–15. doi:10.1016/j.matdes.2012.12.012.
  • Prachayawarakorn, J., and W. Pattanasin. 2016. Effect of pectin particles and cotton fibers on properties of thermoplastic cassava starch composites. Journal of Science & Technology 38 (2):129–36.
  • Rajeshkumar, G., S. Arvindh Seshadri, G. L. Devnani, M. R. Sanjay, S. Siengchin, J. P. Maran, N. Abdullah Al-Dhabi. 2021. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – a comprehensive review. Journal of Cleaner Production 310:127483. doi:10.1016/j.jclepro.2021.127483.
  • Roslim, M., Z. L. Muhammad Huzaifah, S. Sapuan, M. Ishak, and R. A. Ilyas 2018. “Effect of soil burial on water absorption of sugar palm fibre reinforced vinyl ester composites.” In.
  • Sahari, J., S. M. Sapuan, Z. N. Ismarrubie, and M. Z. Rahman. 2012. Physical and chemical properties of different morphological parts of sugar palm fibres. Fibres & Textiles in Eastern Europe 91 (2):21–24.
  • Sahari, J., S. M. Sapuan, Z. N. Ismarrubie, and M. Z. A. Rahman. 2012. Tensile and impact properties of different morphological parts of sugar palm fibre-reinforced unsaturated polyester composites. Polymers and Polymer Composites 20 (9):861–66. doi:10.1177/096739111202000913.
  • Sahari, J., S. M. Sapuan, E. S. Zainudin, and M. A. Maleque. 2014. Physico-chemical and thermal properties of starch derived from sugar palm tree (Arenga Pinnata). Asian Journal of Chemistry 26 (4):955–59. doi:10.14233/ajchem.2014.15652.
  • Salgado, P. R., V. C. Schmidt, S. E. Molina Ortiz, A. N. Mauri, and J. B. Laurindo. 2008. Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. Journal of Food Engineering 85 (3):435–43. doi:10.1016/j.jfoodeng.2007.08.005.
  • Sanyang, M. L., S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari. 2015. Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga Pinnata) starch. Polymers 7 (6):1106–24. doi:10.3390/polym7061106.
  • Sapuan, S. M., and D. Bachtiar. 2012. Mechanical properties of sugar palm fibre reinforced high impact polystyrene composites. Procedia Chemistry 4 (May 2014):101–06. doi:10.1016/j.proche.2012.06.015.
  • Shakuntala, O., G. Raghavendra, and A. Samir Kumar. 2014. Effect of filler loading on mechanical and tribological properties of wood apple shell reinforced epoxy composite. Advances in Materials Science and Engineering 2014:1–9. doi:https://doi.org/10.1155/2014/538651.
  • Soykeabkaew, N., P. Supaphol, and R. Rujiravanit. 2004. Preparation and characterization of jute-and flax-reinforced starch-based composite foams. Carbohydrate Polymers 58 (1):53–63. doi:10.1016/j.carbpol.2004.06.037.
  • Sundum, T., K. Mészáros Szécsényi, and K. Kaewtatip. 2018. Preparation and characterization of thermoplastic starch composites with fly ash modified by planetary ball milling. Carbohydrate Polymers 191:198–204. doi:10.1016/j.carbpol.2018.03.009.
  • Syafri, E., A. Kasim, H. Abral, and A. Asben. 2018. Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment. Journal of Natural Fibers 0 (00):1–11. doi:10.1080/15440478.2018.1455073.
  • Tarique, J., S. Mohd Sapuan, and A. Khalina. 2022. Extraction and characterization of a novel natural lignocellulosic (bagasse and husk) fibers from arrowroot (Maranta Arundinacea). Journal of Natural Fibers 19 (15):9914–30. doi:10.1080/15440478.2021.1993418.
  • Tarique, J., S. M. Sapuan, and A. Khalina. 2021. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of Arrowroot (Maranta Arundinacea) starch biopolymers. Scientific Reports 11 (1):13900. doi:10.1038/s41598-021-93094-y.
  • Tarique, J., S. M. Sapuan, A. Khalina, R. A. Ilyas, and E. S. Zainudin. 2022c. Thermal, flammability, and antimicrobial properties of arrowroot (Maranta Arundinacea) fiber reinforced arrowroot starch biopolymer composites for food packaging applications. International Journal of Biological Macromolecules 213 (January):1–10. doi:10.1016/j.ijbiomac.2022.05.104.
  • Tarique, J., S. M. Sapuan, A. Khalina, S. F. K. Sherwani, J. Yusuf, and R. A. Ilyas. 2021. Recent developments in sustainable arrowroot (Maranta Arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. Journal of Materials Research and Technology 13 (July):1191–219. doi:10.1016/j.jmrt.2021.05.047.
  • Tarique, J., S. M. Sapuan, E. S. Zainudin, A. Khalina, and R. A. Ilyas. 2022a. Degradation behaviour of arrowroot fibre (Maranta Arundinacea) reinforced arrowroot starch biocomposite films. Journal of Research in Nanoscience and Nanotechnology 5 (1):98–102. doi:10.37934/jrnn.5.1.98102.
  • Tarique, J., E. S. Zainudin, S. M. Sapuan, R. A. Ilyas, and A. Khalina. 2022b. Physical, mechanical, and morphological performances of arrowroot (Maranta Arundinacea) fiber reinforced arrowroot starch biopolymer composites. Polymers 14 (3):388. doi:10.3390/polym14030388.
  • Thakur, R., V. Gupta, T. Ghosh, and A. Baran Das. 2022. Effect of anthocyanin-natural deep eutectic solvent (lactic Acid/Fructose) on mechanical, thermal, barrier, and PH-Sensitive properties of polyvinyl alcohol based edible films. Food Packaging and Shelf Life 33 (February):100914. doi:10.1016/j.fpsl.2022.100914.
  • Tongdeesoontorn, W., L. J. Mauer, S. Wongruong, P. Sriburi, and P. Rachtanapun. 2012. Mechanical and physical properties of cassava starch-gelatin composite films. International Journal of Polymeric Materials and Polymeric Biomaterials 61 (10):778–92. doi:10.1080/00914037.2011.610049.
  • Veiga, J. P. S., T. Losada Valle, J. Carlos Feltran, and W. Antonio Bizzo. 2016. Characterization and productivity of cassava waste and its use as an energy source. Renewable Energy 93:691–99. doi:10.1016/j.renene.2016.02.078.
  • Versino, F., and M. Alejandra García. 2014. Cassava (Manihot Esculenta) starch films reinforced with natural fibrous filler. Industrial Crops and Products 58:305–14. doi:10.1016/j.indcrop.2014.04.040.
  • Walster, R. J., A. R. Rozyanty, A. W. M. Kahar, and L. Musa. 2018. “Study of Cassava Starch Filled with Different Loading of Kenaf Core Fiber.” Solid State Phenomena 280:368–373.
  • Zhong, Y., and L. Yunfei. 2014. Effects of glycerol and storage relative humidity on the properties of kudzu starch-based edible films. Starch/staerke 66 (5–6):524–32. doi:10.1002/star.201300202.