899
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative Analysis of the Influence of Different Preparation Methods on the Properties of TEMPO-Oxidized Bacterial Cellulose Powder Films

, , , , , , , & show all

References

  • Abdel-Karim, A. M., A. H. Salama, and M. L. Hassan. 2018. “Electrical Conductivity and Dielectric Properties of Nanofibrillated Cellulose Thin Films from Bagasse.” Journal of Physical Organic Chemistry 31 (9): 1–15. https://doi.org/10.1002/poc.3851.
  • Abral, H., J. Ariksa, M. Mahardika, D. Handayani, I. Aminah, N. Sandrawati, A. B. Pratama, N. Fajri, S. M. Sapuan, and R. A. Ilyas. 2020. “Transparent and Antimicrobial Cellulose Film from Ginger Nanofiber.” Food Hydrocolloids 98:105266. https://doi.org/10.1016/j.foodhyd.2019.105266.
  • Abral, H., A. Kurniawan, D. Rahmadiawan, D. Handayani, E. Sugiarti, and A. N. Muslimin. 2022. “Highly Antimicrobial and Strong Cellulose-Based Biocomposite Film Prepared with Bacterial Cellulose Powders, Uncaria Gambir, and Ultrasonication Treatment.” International Journal of Biological Macromolecules 208 (March): 88–96. https://doi.org/10.1016/j.ijbiomac.2022.02.154.
  • Aguilera, L., N. Fagundes, A. D. Melo, B. Bandeira, F. X. Nobre, J. Anglada-Rivera, J. P. Silva, J. Pérez de la Cruz, and Y. Leyet. 2020. “Influence of Sonication Time on the Structure and Electrical Properties of Na2Ti6O13 Ceramics: An Approach Applying the Mott-Schottky Model.” Ceramics International 46 (7): 8706–8710. https://doi.org/10.1016/j.ceramint.2019.12.106.
  • Badshah, M., H. Ullah, A. R. Khan, S. Khan, J. K. Park, and T. Khan. 2018. “Surface Modification and Evaluation of Bacterial Cellulose for Drug Delivery.” International Journal of Biological Macromolecules 113:526–533. https://doi.org/10.1016/j.ijbiomac.2018.02.135.
  • Baskut, S. 2022. “Effects of Adding GPLs Dispersed at Different Sonication Times on the Thermal and Electrical Conductivities of Spark Plasma Sintered Silicon Carbide.” Materials Chemistry and Physics 287 (May): 126230. https://doi.org/10.1016/j.matchemphys.2022.126230.
  • Celebi, H., and A. Kurt. 2015. “Effects of Processing on the Properties of Chitosan/Cellulose Nanocrystal Films.” Carbohydrate Polymers 133:284–293. https://doi.org/10.1016/j.carbpol.2015.07.007.
  • Charoenrak, S., S. Charumanee, P. Sirisa-Ard, S. Bovonsombut, L. Kumdhitiahutsawakul, S. Kiatkarun, W. Pathom-Aree, T. Chitov, and S. Bovonsombut 2023. Nanobacterial Cellulose from Kombucha Fermentation as a Potential Protective Carrier of Lactobacillus Plantarum Under Simulated Gastrointestinal Tract Conditions. Polymers, 15(6), 1356. https://doi.org/10.3390/polym15061356
  • de Souza, T. C., J. D. P. de Amorim, C. J. G. da Silva Junior, A. D. M. de Medeiros, A. F. de Santana Costa, G. M. Vinhas, and L. A. Sarubbo. 2023. “Magnetic Bacterial Cellulose Biopolymers: Production and Potential Applications in the Electronics Sector.” Polymers 15 (4): 1–15. https://doi.org/10.3390/polym15040853.
  • Dinesh, G., and B. Kandasubramanian. 2022. “Fabrication of transparent paper devices from nanocellulose fiber.” Materials Chemistry and Physics 281 (May 2021): 125707. https://doi.org/10.1016/j.matchemphys.2022.125707.
  • Fatima, T., R. Jolly, M. R. Wani, G. G. H. A. Shadab, and M. Shakir. 2021. “Exploring the bone regeneration potential of bio-fabricated nano-titania reinforced polyvinyl alcohol/nano-cellulose based composite film.” Results in Materials 12 (October): 100240. https://doi.org/10.1016/j.rinma.2021.100240.
  • Fauza, A. N., F. Qalbina, H. Nurdin, A. Ambiyar, and R. Refdinal. 2023. “The Influence of Processing Temperature on the Mechanical Properties of Recycled PET Fibers.” Teknomekanik 6 (1): 21–28. https://doi.org/10.24036/teknomekanik.v6i1.21472.
  • Gabilondo, N., A. E. Alon, N. Gabilondo, A. Eceiza, and A. Retegi. 2021. “A Review of Bacterial Cellulose: Sustainable Production from Agricultural Waste and Applications in Various Fields.” Cellulose 4 (13): 8229–8253. https://doi.org/10.1007/s10570-021-04020-4.
  • Hanna, R., R. Gross, and R. Gross. 2015. Innovation Timelines from Invention to Maturity. Technology and Policy Assessment Innovation Timelines from Invention to Maturity ( December). UKERC. https://doi.org/10.13140/RG.2.1.5016.4560
  • Hou, M., M. Xu, and B. Li. 2018. “Enhanced Electrical Conductivity of Cellulose Nanofiber/Graphene Composite Paper with a Sandwich Structure.” ACS Sustainable Chemistry and Engineering 6 (3): 2983–2990. https://doi.org/10.1021/acssuschemeng.7b02683.
  • Huang, C., H. Ji, Y. Yang, B. Guo, L. Luo, Z. Meng, L. Fan, and J. Xu. 2020. “TEMPO-Oxidized Bacterial Cellulose Nanofiber Membranes as High-Performance Separators for Lithium-Ion Batteries.” Carbohydrate Polymers 230:230. https://doi.org/10.1016/j.carbpol.2019.115570.
  • Ilyas, R. A., S. M. Sapuan, and M. R. Ishak. 2018. “Isolation and Characterization of Nanocrystalline Cellulose from Sugar Palm Fibres (Arenga Pinnata).” Carbohydrate Polymers 181:1038–1051. https://doi.org/10.1016/j.carbpol.2017.11.045.
  • Izakura, S., H. Koga, and K. Uetani. 2021. “Humidity-Responsive Thermal Conduction Properties of Bacterial Cellulose Films.” Cellulose 28 (9): 5363–5372. https://doi.org/10.1007/s10570-021-03888-6.
  • Jiang, F., L. Yin, Q. Yu, C. Zhong, and J. Zhang. 2015. “Bacterial Cellulose Nanofibrous Membrane as Thermal Stable Separator for Lithium-Ion Batteries.” Journal of Power Sources 279:21–27. https://doi.org/10.1016/j.jpowsour.2014.12.090.
  • Kondo, T. 1997. “The Assignment of IR Absorption Bands Due to Free Hydroxyl Groups in Cellulose.” CELLULOSE 4 (4): 281–292.
  • Lin, S. P., I. Loira Calvar, J. M. Catchmark, J. R. Liu, A. Demirci, and K. C. Cheng. 2013. “Biosynthesis, Production and Applications of Bacterial Cellulose.” Cellulose 20 (5): 2191–2219. https://doi.org/10.1007/s10570-013-9994-3.
  • Liu, W., H. Du, M. Zhang, K. Liu, H. Liu, H. Xie, X. Zhang, and C. Si. 2020. “Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review.” ACS Sustainable Chemistry and Engineering 8 (20): 7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125.
  • Liu, W., K. Liu, H. Du, T. Zheng, N. Zhang, T. Xu, B. Pang, X. Zhang, C. Si, and K. Zhang. 2022. “Cellulose Nanopaper: Fabrication, Functionalization, and Applications.” Nano-Micro Letters 14 (1): 1–27. https://doi.org/10.1007/s40820-022-00849-x.
  • Lu, Q., L. Tang, F. Lin, S. Wang, Y. Chen, X. Chen, and B. Huang. 2014. “Preparation and Characterization of Cellulose Nanocrystals via Ultrasonication-Assisted FeCl3-Catalyzed Hydrolysis.” Cellulose 21 (5): 3497–3506. https://doi.org/10.1007/s10570-014-0376-2.
  • Meldawati, K., S. Ilyas, T. Tamrin, I. Radecka, S. Swingler, A. Gupta, A. G. Stamboulis, and S. Gea. 2023. “Bioactive Bacterial Cellulose Wound Dressings for Burns with Collagen in-Situ and Chitosan ex-Situ Impregnation.” International Journal of Biological Macromolecules 230 (September 2022): 123118. https://doi.org/10.1016/j.ijbiomac.2022.123118.
  • Mihranyan, A., L. Nyholm, A. E. Garcia Bennett, and M. Strømme. 2008. “A Novel High Specific Surface Area Conducting Paper Material Composed of Polypyrrole and Cladophora Cellulose.” Journal of Physical Chemistry B 112 (39): 12249–12255. https://doi.org/10.1021/jp805123w.
  • Moradi, Z., A. Alihosseini, and A. Ghadami. 2023. “Adsorption Removal of Arsenic from Aqueous Solution by Carboxy Methyl Cellulose(cmc) Modified with Montmorillonite.” Results in Materials 17 (December 2022): 100378. https://doi.org/10.1016/j.rinma.2023.100378.
  • Nakagaito, A. N., M. Nogi, and H. Yano. 2010. “Displays from Transparent Films of Natural Nanofibers.” MRS Bulletin 35 (3): 214–218. https://doi.org/10.1557/mrs2010.654.
  • Nogi, M., S. Iwamoto, A. N. Nakagaito, and H. Yano. 2009. “Optically Transparent Nanofiber Paper.” Advanced Materials 21 (16): 1595–1598. https://doi.org/10.1002/adma.200803174.
  • Orr, M. P., A. Sonekan, and M. L. Shofner. 2020. “Effect of Processing Method on Cellulose Nanocrystal/polyethylene-Co-Vinyl Alcohol Composites.” Polymer Engineering and Science 60 (12): 2979–2990. https://doi.org/10.1002/pen.25527.
  • Putra, A., R. P. Sari, E. Nasra, E. Yuniarti, and A. Amran. 2021. “Bacterial cellulose-rambutan leaf extract (Nephelium lappaceum L.) composite: preparation and characterization.” Journal of Physics. Conference Series 1876 (1): 012027. https://doi.org/10.1088/1742-6596/1876/1/012027.
  • Qu, R., M. Tang, Y. Wang, D. Li, and L. Wang. 2021. “TEMPO-Oxidized Cellulose Fibers from Wheat Straw: Effect of Ultrasonic Pretreatment and Concentration on Structure and Rheological Properties of Suspensions.” Carbohydrate Polymers 255 (November 2020): 117386. https://doi.org/10.1016/j.carbpol.2020.117386.
  • Rahmadiawan, D., H. Abral, M. K. Ilham, P. Puspitasari, R. A. Nabawi, S. C. Shi, E. Sugiarti, et al. 2023. “Enhanced UV Blocking, Tensile and Thermal Properties of Bendable TEMPO-Oxidized Bacterial Cellulose Powder-Based Films Immersed in PVA/Uncaria Gambir/ZnO Solution.” Journal of Materials Research and Technology 26:5566–5575. https://doi.org/10.1016/j.jmrt.2023.08.267.
  • Rahmadiawan, D., H. Abral, R. A. Kotodeli, E. Sugiarti, A. N. Muslimin, R. I. Admi, A. Arafat, H.-J. Kim, S. M. Sapuan, and E. A. Kosasih. 2023. “A Novel Highly Conductive, Transparent, and Strong Pure-Cellulose Film from TEMPO-Oxidized Bacterial Cellulose by Increasing Sonication Power.” Polymers 15 (3): 643. https://doi.org/10.3390/polym15030643.
  • Rahmadiawan, D., H. Abral, R. M. Railis, I. C. Iby, M. Mahardika, D. Handayani, K. D. Natrana, D. Juliadmi, and F. Akbar. 2022. “The Enhanced Moisture Absorption and Tensile Strength of PVA/Uncaria Gambir Extract by Boric Acid as a Highly Moisture-Resistant, Anti-UV, and Strong Film for Food Packaging Applications.” Journal of Composites Science 6 (11): 337. https://doi.org/10.3390/jcs6110337.
  • Rahmadiawan, D., Z. Fuadi, R. Kurniawan, H. Abral, F. Ilhamsyah, A. Arafat, R. Rifelino, B. Syahri, and E. Indrawan. 2022. “Tribological Properties of Aqueous Carboxymethyl Cellulose/Uncaria Gambir Extract as Novel Anti-Corrosion Water-Based Lubricant.” Tribology in Industry 44 (4): 584–591. https://doi.org/10.24874/TI.1357.08.22.10.
  • Saibuatong, O. A., and M. Phisalaphong. 2010. “Novo Aloe Vera-Bacterial Cellulose Composite Film from Biosynthesis.” Carbohydrate Polymers 79 (2): 455–460. https://doi.org/10.1016/j.carbpol.2009.08.039.
  • Segal, L., J. J. Creely, A. E. Martin, and M. Conrad. 1958. “Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer.” Textile Research Journal 29 (10): 786–794. https://doi.org/10.1177/004051755902901003.
  • Sharif, S. N., N. Hashim, I. M. Isa, S. A. Bakar, M. I. Saidin, M. S. Ahmad, M. Mamat, M. Z. Hussein, and R. Zainul. 2021. “Polymeric Nanocomposite-Based Herbicide of Carboxymethyl Cellulose Coated-Zinc/aluminium Layered Double Hydroxide-Quinclorac: A Controlled Release Purpose for Agrochemicals.” Journal of Polymers and the Environment 29 (6): 1817–1834. https://doi.org/10.1007/s10924-020-01997-0.
  • Sheng, J., T. Chen, R. Wang, Z. Zhang, F. Hua, and R. Yang. 2020. “Ultra-light cellulose nanofibril membrane for lithium-ion batteries.” Journal of Membrane Science 595 (September 2019): 117550. https://doi.org/10.1016/j.memsci.2019.117550.
  • Siljander, S., P. Keinänen, A. Räty, K. R. Ramakrishnan, S. Tuukkanen, V. Kunnari, A. Harlin, J. Vuorinen, and M. Kanerva. 2018. “Effect of Surfactant Type and Sonication Energy on the Electrical Conductivity Properties of Nanocellulose-CNT Nanocomposite Films.” International Journal of Molecular Sciences 19 (6): 1–14. https://doi.org/10.3390/ijms19061819.
  • Song, J., C. Chen, S. Zhu, M. Zhu, J. Dai, U. Ray, Y. Li, et al. 2018. “Processing Bulk Natural Wood into a High-Performance Structural Material.” Nature 554 (7691): 224–228. https://doi.org/10.1038/nature25476.
  • Tun, H. M., R. E. Wulansari, D. Pradhan, and Z. M. Naing. 2023. “Design, Fabrication and Measurement of Metal-Semiconductor Field Effect Transistor Based on Zinc Oxide Material.” jerel 2 (3): 104–111. https://doi.org/10.58712/jerel.v2i3.103.
  • Udoetok, I. A., L. D. Wilson, and J. V. Headley. 2018. “Ultra-Sonication Assisted Cross-Linking of Cellulose Polymers.” Ultrasonics Sonochemistry 42 (October 2017): 567–576. https://doi.org/10.1016/j.ultsonch.2017.12.017.
  • Ummartyotin, S., J. Juntaro, M. Sain, and H. Manuspiya. 2012. “Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display.” Industrial Crops and Products 35 (1): 92–97. https://doi.org/10.1016/j.indcrop.2011.06.025.
  • Wu, C. N., and K. C. Cheng. 2017. “Strong, Thermal-Stable, Flexible, and Transparent Films by Self-Assembled TEMPO-Oxidized Bacterial Cellulose Nanofibers.” Cellulose 24 (1): 269–283. https://doi.org/10.1007/s10570-016-1114-8.
  • Xi, J., Y. Lou, Y. Chu, L. Meng, H. Wei, H. Dai, Z. Xu, H. Xiao, and W. Wu. 2023. “High-flux bacterial cellulose ultrafiltration membrane with controllable pore structure.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 656:130428. https://doi.org/10.1016/j.colsurfa.2022.130428.
  • Ybañez, M. G., and D. H. Camacho. 2021. “Designing Hydrophobic Bacterial Cellulose Film Composites Assisted by Sound Waves.” RSC Advances 11 (52): 32873–32883. https://doi.org/10.1039/d1ra02908h.
  • Yousefi, H., M. Faezipour, S. Hedjazi, M. M. Mousavi, Y. Azusa, and A. H. Heidari. 2013. “Comparative Study of Paper and Nanopaper Properties Prepared from Bacterial Cellulose Nanofibers and Fibers/Ground Cellulose Nanofibers of Canola Straw.” Industrial Crops and Products 43 (1): 732–737. https://doi.org/10.1016/j.indcrop.2012.08.030.
  • Zhang, R., Y. Wang, D. Ma, S. Ahmed, W. Qin, and Y. Liu. 2019. “Effects of Ultrasonication Duration and Graphene Oxide and Nano-Zinc Oxide Contents on the Properties of Polyvinyl Alcohol Nanocomposites.” Ultrasonics Sonochemistry 59 (August): 104731. https://doi.org/10.1016/j.ultsonch.2019.104731.