352
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Weibull Statistic and Artificial Neural Network Analysis of the Mechanical Performances of Fibers from the Flower Agave Plant for Eco-Friendly Green Composites

, ORCID Icon, ORCID Icon, , &

References

  • Abbasi, B., S. T. A. Niaki, M. A. Khalife, and Y. Faize. 2011. “A Hybrid Variable Neighborhood Search and Simulated Annealing Algorithm to Estimate the Three Parameters of the Weibull Distribution.” Expert Systems with Applications 38 (1): 700–20. https://doi.org/10.1016/j.eswa.2010.07.022.
  • Amroune, S., A. Belaadi, M. Bourchak, A. Makhlouf, and H. Satha. 2020. “Statistical and Experimental Analysis of the Mechanical Properties of Flax Fibers.” Journal of Natural Fibers 19 (4): 1387–1401. https://doi.org/10.1080/15440478.2020.1775751.
  • Andersons, J., E. Sparniņš, R. Joffe, and L. Wallström. 2005. “Strength Distribution of Elementary Flax Fibres.” Composites Science and Technology 65 (3–4): 693–702. https://doi.org/10.1016/j.compscitech.2004.10.001.
  • Andersons, J., E. SparniņŠ, and E. Poriķe. 2009. “Strength and Damage of Elementary Flax Fibers Extracted from Tow and Long Line Flax.” Journal of Composite Materials 43 (22): 2653–2664. https://doi.org/10.1177/0021998309345035.
  • Belaadi, A., S. Amroune, and M. Bourchak. 2019. “Effect of Eco-Friendly Chemical Sodium Bicarbonate Treatment on the Mechanical Properties of Flax Fibres: Weibull Statistics.” The International Journal of Advanced Manufacturing Technology 106 (5–6): 1753–1774. https://doi.org/10.1007/s00170-019-04628-8.
  • Belaadi, A., S. Amroune, Y. Seki, O. Yasin Keskin, S. Köktaş, M. Bourchak, A. Dufresne, H. Fouad, and M. Jawaid. 2022. “Extraction and Characterization of a New Lignocellulosic Fiber from Yucca Treculeana L. Leaf as Potential Reinforcement for Industrial Biocomposites.” Journal of Natural Fibers 19 (15): 12235–12250. https://doi.org/10.1080/15440478.2022.2054895.
  • Belaadi, A., A. Bezazi, M. Maache, and F. Scarpa. 2014. “Fatigue in Sisal Fiber Reinforced Polyester Composites: Hysteresis and Energy Dissipation.” Procedia Engineering 74:325–328. https://doi.org/10.1016/j.proeng.2014.06.272.
  • Belaadi, A., M. Bourchak, and H. Aouici. 2016. “Mechanical Properties of Vegetal Yarn: Statistical Approach.” Composites Part B Engineering 106:139–153. https://doi.org/10.1016/j.compositesb.2016.09.033.
  • Benzannache, N., A. Belaadi, M. Boumaaza, and M. Bourchak. 2021. “Improving the Mechanical Performance of Biocomposite Plaster/Washingtonian Filifira Fibres Using the RSM Method.” Journal of Building Engineering 33:101840. https://doi.org/10.1016/j.jobe.2020.101840.
  • Bezazi, A., A. Belaadi, M. Bourchak, F. Scarpa, and K. Boba. 2014. “Novel Extraction Techniques, Chemical and Mechanical Characterisation of Agave Americana L. Natural Fibres.” Composites Part B Engineering 66:194–203. https://doi.org/10.1016/j.compositesb.2014.05.014.
  • Dembri, I., A. Belaadi, M. Boumaaza, and M. Bourchak. 2022. “Tensile Behavior and Statistical Analysis of Washingtonia Filifera Fibers as Potential Reinforcement for Industrial Polymer Biocomposites.” Journal of Natural Fibers 19 (16): 14839–14854. https://doi.org/10.1080/15440478.2022.2069189.
  • De Rosa, I. M., J. M. Kenny, D. Puglia, C. Santulli, and F. Sarasini. 2010. “Morphological, Thermal and Mechanical Characterization of Okra (Abelmoschus Esculentus) Fibres as Potential Reinforcement in Polymer Composites.” Composites Science and Technology 70 (1): 116–122. https://doi.org/10.1016/j.compscitech.2009.09.013.
  • Elsayed, E. A. 2008. “Reliability Prediction and Accelerated Testing.” Springer Series in Reliability Engineering. https://doi.org/10.1007/978-1-84800-011-7_7.
  • Estrada, M., D. L. Linero, and F. Ramírez. 2013. “Constitutive Relationship of the Fiber Cluster of Bamboo Guadua Angustifolia, Determined by Means of a Weibull Probability Function and a Model of Progressive Failure.” Mechanics of Materials 63 (1): 12–20. https://doi.org/10.1016/j.mechmat.2013.04.007.
  • Ferfari, O., A. Belaadi, A. Bedjaoui, H. Alshahrani, and M. K. A. Khan. 2023. “Characterization of a New Cellulose Fiber Extracted from Syagrus Romanzoffiana Rachis as a Potential Reinforcement in Biocomposites Materials.” Materials Today Communications 36 (May): 106576. https://doi.org/10.1016/j.mtcomm.2023.106576.
  • Fiore, V., T. Scalici, and A. Valenza. 2018. “Effect of Sodium Bicarbonate Treatment on Mechanical Properties of Flax-Reinforced Epoxy Composite Materials.” Journal of Composite Materials 52 (8): 1061–1072. https://doi.org/10.1177/0021998317720009.
  • Gahgah, M., A. Belaadi, M. Boumaaza, H. Alshahrani, and M. K. A. Khan. 2023. “Effect of Number of Tests on the Mechanical Characteristics of Agave Sisalana Yarns for Composites Structures: Statistical Approach.” Polymers 15 (13): 2885. https://doi.org/10.3390/polym15132885.
  • Indran, S., and R. Edwin Raj. 2015. “Characterization of New Natural Cellulosic Fiber from Cissus Quadrangularis Stem.” Carbohydrate Polymers 117:392–399. https://doi.org/10.1016/j.carbpol.2014.09.072.
  • Khelifi, A., M. Boumaaza, A. Belaadi, T. Djedid, A. Azevedo, R. Garcez de, M. Bourchak, and M. Jawaid. 2023. “Effects of Alkaline Treatment of Washingtonia Mesh Waste on the Mechanical and Physical Properties of Bio ‑ Mortar: Experimental and Prediction Models.” Biomass Conversion and Biorefinery. no. 0123456789. https://doi.org/10.1007/s13399-023-04221-w.
  • Lalaymia, I., A. Belaadi, A. Bedjaoui, H. Alshahrani, and M. K. A. Khan. 2023. “Extraction and Characterization of Fiber from the Flower Stalk of the Agave Plant for Alternative Reinforcing Biocomposite Materials.” Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04782-w.
  • Lapidot, I. 2020. “Tech. Report: Modified Kolmogorov – Smirnov Test.” Journal of Biomedical Optics 25 (4, December): 1–15. https://doi.org/10.13140/RG.2.2.34109.69608.
  • Lekrine, A., A. Belaadi, A. Makhlouf, S. Amroune, M. Bourchak, H. Satha, and M. Jawaid. 2022. “Structural, Thermal, Mechanical and Physical Properties of Washingtonia Filifera Fibres Reinforced Thermoplastic Biocomposites.” Materials Today Communications 31:103574. https://doi.org/10.1016/j.mtcomm.2022.103574.
  • Maache, M., A. Bezazi, S. Amroune, F. Scarpa, and A. Dufresne. 2017. “Characterization of a Novel Natural Cellulosic Fiber from Juncus Effusus L.” Carbohydrate Polymers 171:163–172. https://doi.org/10.1016/j.carbpol.2017.04.096.
  • Mohit, H., M. R. Sanjay, S. Siengchin, B. Kanaan, V. Ali, I. M. Alarifi, and M. A. A. E.-B. Tarek. 2023. “Predicting Physico-Mechanical and Thermal Properties of Loofa Cylindrica Fibers and Al2O3/Al-SiC Reinforced Polymer Hybrid Composites Using Artificial Neural Network Techniques.” Construction and Building Materials 409:133901. https://doi.org/10.1016/j.conbuildmat.2023.133901.
  • Morris, B. 2003. “The Components of the Wired Spanning Forest are Recurrent.” Probability Theory and Related Fields 125 (2): 259–265. https://doi.org/10.1007/s00440-002-0236-0.
  • Mulenga, T. K., A. U. Ude, and C. Vivekanandhan. 2021. “Techniques for Modelling and Optimizing the Mechanical Properties of Natural Fiber Composites: A Review.” Fibers 9 (1): 6. https://doi.org/10.3390/fib9010006.
  • Ornaghi, H. L., R. Motta Neves, and F. M. Monticeli. 2021. “Application of the Artificial Neural Network (ANN) Approach for Prediction of the Kinetic Parameters of Lignocellulosic Fibers.” Textiles 1 (2): 258–267. https://doi.org/10.3390/textiles1020013.
  • Parida, P. K., A. Kumar Pradhan, and M. Kumar Pandit. 2023a. “Characterization of Cellulose Fiber Extracted from Stems of Myriostachya Wightiana (MW) Plants: A Viable Reinforcement for Polymer Composite.” Fibers and Polymers 24 (2): 489–503. https://doi.org/10.1007/s12221-023-00020-2.
  • Parida, P. K., A. Kumar Pradhan, and M. Kumar Pandit. 2023b. “Characterization of Cellulose Fiber Extracted from Stems of Myriostachya Wightiana (MW) Plants: A Viable Reinforcement for Polymer Composite.” Fibers and Polymers 24 (February): 489–503. https://doi.org/10.1007/s12221-023-00020-2.
  • Rice, M.-R.-P., T. Meurah, I. Mahlia, N. Saba, A. Hassan, and M. Jawaid. 2019. “Mechanical and Thermal Properties of Montmorillonite-Reinforced Polypropylene/Rice Husk Hybrid Nanocomposites.” Polymers 11 (10): 11. https://doi.org/10.3390/polym11101557.
  • Saaidia, A., A. Bezazi, A. Belbah, H. Bouchelaghem, F. Scarpa, and S. Amirouche. 2017. “Mechano-Physical Properties and Statistical Design of Jute Yarns.” Measurement: Journal of the International Measurement Confederation 111:284–294. https://doi.org/10.1016/j.measurement.2017.07.054.
  • Sanjay, M. R., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. “Characterization and Properties of Natural Fiber Polymer Composites: A Comprehensive Review.” Journal of Cleaner Production 172:566–581. Elsevier B.V. https://doi.org/10.1016/j.jclepro.2017.10.101.
  • Selvaraj, M., P. Chapagain, and B. Mylsamy. 2022. “Characterization Studies on New Natural Cellulosic Fiber Extracted from the Stem of Ageratina Adenophora Plant.” Journal of Natural Fibers 20 (1). https://doi.org/10.1080/15440478.2022.2156019.
  • Senthamaraikannan, P., M. R. Sanjay, K. Subrahmanya Bhat, N. H. Padmaraj, and M. Jawaid. 2019. “Characterization of Natural Cellulosic Fiber from Bark of Albizia Amara.” Journal of Natural Fibers 16 (8): 1124–1131. https://doi.org/10.1080/15440478.2018.1453432.
  • Van de Velde, K., and P. Kiekens. 1999. “Wettability of Natural Fibres Used as Reinforcement for Composites.” Angewandte Makromolekulare Chemie 272 (4761): 87–93. https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<87:AID-APMC87>3.0.CO;2-Q.
  • Virk, A. S., W. Hall, and J. Summerscales. 2009. “Multiple Data Set (MDS) Weak-Link Scaling Analysis of Jute Fibres.” Composites Part A: Applied Science and Manufacturing 40 (11): 1764–1771. https://doi.org/10.1016/j.compositesa.2009.08.022.
  • Virk, A. S., W. Hall, and J. Summerscales. 2010. “Physical Characterization of Jute Technical Fibers: Fiber Dimensions.” Journal of Natural Fibers 7 (3): 216–228. https://doi.org/10.1080/15440478.2010.504389.
  • Wang, J., H. Zhou, Z. Liu, X. Peng, and H. Zhou. 2022. “Statistical Modelling of Tensile Properties of Natural Fiber Yarns Considering Probability Distributions of Fiber Crimping and Effective Yarn Elastic Modulus.” Composites Science and Technology 218:109142. https://doi.org/10.1016/j.compscitech.2021.109142.