213
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Drying Shrinkage and Mechanical Strength of Cementitious Composites with Alkali-Treated Makino Bamboo Fibers

, ORCID Icon &

References

  • Adel Salih, A., R. Zulkifli, and C. H. Azhari. 2020. “Tensile properties and microstructure of single-cellulosic bamboo fiber strips after alkali treatment.” Fibers 8 (5): 26. https://doi.org/10.3390/fib8050026.
  • Akinyemi, B., and T. Omoniyi. 2018. “Properties of Latex Polymer Modified Mortars Reinforced with Waste Bamboo Fibers from Construction Waste.” Buildings 8 (11): 149. https://doi.org/10.3390/buildings8110149.
  • Awwad, E., M. Mabsout, B. Hamad, M. T. Farran, and H. Khatib. 2012. “Studies on Fibre-Reinforced Concrete Using Industrial Hemp Fibres.” Construction and Building Materials 35:710–17. https://doi.org/10.1016/j.conbuildmat.2012.04.119.
  • Banjo Akinyemi, A., E. Temidayo Omoniyi, and G. Onuzulike. 2020. “Effect of Microwave Assisted Alkali Pretreatment and Other Pretreatment Methods on Some Properties of Bamboo Fibre Reinforced Cement Composites.” Construction and Building Materials 245:118405. https://doi.org/10.1016/j.conbuildmat.2020.118405.
  • Bederina, M., M. Gotteicha, B. Belhadj, R. M. Dheily, M. M. Khenfer, and M. Quéneudec. 2012. “Drying Shrinkage Studies of Wood Sand Concrete–Effect of Different Wood Treatments.” Construction and Building Materials 36:1066–1075. https://doi.org/10.1016/j.conbuildmat.2012.06.010.
  • Bentz, D. P., E. J. Garboczi, and D. A. Quenard. 1998. “Modelling Drying Shrinkage in Reconstructed Porous Materials: Application to Porous Vycor Glass.” Modelling and Simulation in Materials Science and Engineering 6 (3): 211–236. https://doi.org/10.1088/0965-0393/6/3/002.
  • Bishop, M., and A. R. Barron. 2006. “Cement Hydration Inhibition with Sucrose, Tartaric Acid, and Lignosulfonate: Analytical and Spectroscopic Study.” Industrial & Engineering Chemistry Research 45 (21): 7042–7049. https://doi.org/10.1021/ie060806t.
  • Bissonnette, B., P. Pierre, and M. Pigeon. 1999. “Influence of Key Parameters on Drying Shrinkage of Cementitious Materials.” Cement and Concrete Research 29 (10): 1655–1662. https://doi.org/10.1016/S0008-8846(99)00156-8.
  • Borchani, K. E., C. Carrot, and M. Jaziri. 2015. “Untreated and Alkali Treated Fibers from Alfa Stem: Effect of Alkali Treatment on Structural, Morphological and Thermal Features.” Cellulose 22 (3): 1577–1589. https://doi.org/10.1007/s10570-015-0583-5.
  • Chakraborty, S., S. P. Kundu, A. Roy, B. Adhikari, and S. B. Majumder. 2013. “Effect of Jute as Fibre Reinforcement Controlling the Hydration Characteristics of Cement Matrix.” Industrial & Engineering Chemistry Research 52 (3): 1252–1260. https://doi.org/10.1021/ie300607r.
  • Chakraborty, S., S. P. Kundu, A. Roy, R. K. Basak, B. Adhikari, and S. B. Majumder. 2013. “Improvement of the Mechanical Properties of Jute Fibre Reinforced Cement Mortar: A Statistical Approach.” Construction and Building Materials 38:776–784. https://doi.org/10.1016/j.conbuildmat.2012.09.067.
  • Chattopadhyay, S. K., R. K. Khandal, R. Uppaluri, and A. K. Ghoshal. 2011. “Bamboo Fiber Reinforced Polypropylene Composites and Their Mechanical, Thermal, and Morphological Properties.” Journal of Applied Polymer Science 119 (3): 1619–1626. https://doi.org/10.1002/app.32826.
  • Chen, H., J. Wu, J. Shi, W. Zhang, and H. Wang. 2021. “Effect of Alkali Treatment on Microstructure and Thermal Stability of Parenchyma Cell Compared with Bamboo Fiber.” Industrial Crops and Products 164:113380. https://doi.org/10.1016/j.indcrop.2021.113380.
  • Chen, H., Y. Yu, T. Zhong, Y. Wu, Y. Li, Z. Wu, and B. Fei. 2016. “Effect of Alkali Treatment on Microstructure and Mechanical Properties of Individual Bamboo Fibers.” Cellulose 24 (1): 333–347. https://doi.org/10.1007/s10570-016-1116-6.
  • Chen, H., W. Zhang, X. Wang, H. Wang, Y. Wu, T. Zhong, and B. Fei. 2018. “Effect of Alkali Treatment on Wettability and Thermal Stability of Individual Bamboo Fibers.” Journal of Wood Science 64 (4): 398–405. https://doi.org/10.1007/s10086-018-1713-0.
  • Chien, Y.-C., T.-C. Yang, K.-C. Hung, C.-C. Li, J.-W. Xu, and J.-H. Wu. 2018. “Effects of Heat Treatment on the Chemical Compositions and Thermal Decomposition Kinetics of Japanese Cedar and Beech Wood.” Polymer Degradation and Stability 158:220–227. https://doi.org/10.1016/j.polymdegradstab.2018.11.003.
  • Chowdhury, M. N. K., M. D. H. Beg, M. R. Khan, and M. F. Mina. 2013. “Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment.” Cellulose 20 (3): 1477–1490. https://doi.org/10.1007/s10570-013-9921-7.
  • Chung, M. J., and S. Y. Wang. 2017. “Effects of Peeling and Steam-Heating Treatment on Basic Properties of Two Types of Bamboo Culms (Phyllostachys Makinoi and Phyllostachys pubescens).” Journal of Wood Science 63 (5): 473–482. https://doi.org/10.1007/s10086-017-1647-y.
  • Coutts, R. S. P., Y. Ni, and B. C. Tobias. 1994. “Air-cured bamboo pulp reinforced cement.” Journal of Materials Science Letters 13 (4): 283–285. https://doi.org/10.1007/BF00571777.
  • da Costa Correia, V., M. Ardanuy, J. Claramunt, and H. Savastano Jr. 2019. “Assessment of Chemical and Mechanical Behavior of Bamboo Pulp and Nanofibrillated Cellulose Exposed to Alkaline Environments.” Cellulose 26 (17): 9269–9285. https://doi.org/10.1007/s10570-019-02703-7.
  • Das, M., and D. Chakraborty. 2006. “Influence of Alkali Treatment on the Fine Structure and Morphology of Bamboo Fibers.” Journal of Applied Polymer Science 102 (5): 5050–5056. https://doi.org/10.1002/app.25105.
  • Das, M., and D. Chakraborty. 2007. “Evaluation of Improvement of Physical and Mechanical Properties of Bamboo Fibers Due to Alkali Treatment.” Journal of Applied Polymer Science 107 (1): 522–527. https://doi.org/10.1002/app.26155.
  • Gabrovšek, R., T. Vuk, and V. Kaučič. 2006. “Evaluation of the Hydration of Portland Cement Containing Various Carbonates by Means of Thermal Analysis.” Acta Chimica Slovenica 53:159–165. https://acta-arhiv.chem-soc.si/53/53-2-159.pdf.
  • Gao, P., Y. Chen, H. Huang, Z. Qian, E. Schlangen, J. Wei, and Q. Yu. 2020. “Effect of Relative Humidity on Drying-Induced Damage in Concrete: A Comparative Study of Digital Image Correlation and Lattice Modelling.” Materials & Design 196:109128. https://doi.org/10.1016/j.matdes.2020.109128.
  • Guo, A., Z. Sun, and J. Satyavolu. 2020. “Impact of Modified Kenaf Fibers on Shrinkage and Cracking of Cement Pastes.” Construction and Building Materials 264:120230. https://doi.org/10.1016/j.conbuildmat.2020.120230.
  • Ishikawa, A., T. Okano, and J. Sugiyama. 1997. “Fine Structure and Tensile Properties of Ramie Fibres in the Crystalline Form of Cellulose I, II, IIII and IVI.” Polymer 38 (2): 463–468. https://doi.org/10.1016/S0032-3861(96)00516-2.
  • Islam, S. M., R. R. Hussain, and M. A. Z. Morshed. 2012. “Fiber-Reinforced Concrete Incorporating Locally Available Natural Fibers in Normal-And High-Strength Concrete and a Performance Analysis with Steel Fiber-Reinforced Composite Concrete.” Journal of Composite Materials 46 (1): 111–122. https://doi.org/10.1177/0021998311410492.
  • Jayaramudu, J., A. Maity, E. R. Sadiku, B. R. Guduri, A. Varada Rajulu, C. V. V. Ramana, and R. Li. 2011. “Structure and Properties of New Natural Cellulose Fabrics from Cordia Dichotoma.” Carbohydrate Polymers 86 (4): 1623–1629. https://doi.org/10.1016/j.carbpol.2011.06.071.
  • Jo, B. W., and S. Chakraborty. 2015. “A Mild Alkali Treated Jute Fibre Controlling the Hydration Behaviour of Greener Cement Paste.” Scientific Reports 5 (1): 7837. https://doi.org/10.1038/srep07837.
  • Kovler, K., and S. Zhutovsky. 2006. “Overview and Future Trends of Shrinkage Research.” Materials and Structures 39 (9): 827–847. https://doi.org/10.1617/s11527-006-9114-z.
  • Lecompte, T., A. Perrot, A. Subrianto, A. L. Duigou, and G. Ausias. 2015. “A Novel Pull-Out Device Used to Study the Influence of Pressure During Processing of Cement-Based Material Reinforced with Coir.” Construction and Building Materials 78:224–233. https://doi.org/10.1016/j.conbuildmat.2014.12.119.
  • Lin, J., Z. Yang, X. Hu, G. Hong, S. Zhang, and W. Song. 2018. “The Effect of Alkali Treatment on Properties of Dopamine Modification of Bamboo Fiber/Polylactic Acid Composites.” Polymers 10 (4): 403. https://doi.org/10.3390/polym10040403.
  • Liu, Y., and H. Hu. 2008. “X-Ray Diffraction Study of Bamboo Fibers Treated with NaOh.” Fibers and Polymers 9 (6): 735–739. https://doi.org/10.1007/s12221-008-0115-0.
  • Li, M., S. Zhou, and X. Guo. 2017. “Effects of Alkali-Treated Bamboo Fibers on the Morphology and Mechanical Properties of Oil Well Cement.” Construction and Building Materials 150:619–625. https://doi.org/10.1016/j.conbuildmat.2017.05.215.
  • Mindess, S., J. F. Young, and D. Darwin. 2002. Concrete. 2nd ed. New Jersey: Prentice Hall.
  • Mohr, B. J., J. J. Biernacki, and K. E. Kurtis. 2006. “Microstructural and Chemical Effects of Wet/Dry Cycling on Pulp Fiber–Cement Composites.” Cement and Concrete Research 36 (7): 1240–1251. https://doi.org/10.1016/j.cemconres.2006.03.020.
  • Onuaguluchi, O., and N. Banthia. 2016. “Plant-Based Natural Fibre Reinforced Cement Composites: A Review.” Cement and Concrete Composites 68:96–108. https://doi.org/10.1016/j.cemconcomp.2016.02.014.
  • Ouajai, S., and R. A. Shanks. 2005. “Composition, Structure and Thermal Degradation of Hemp Cellulose After Chemical Treatments.” Polymer Degradation and Stability 89 (2): 327–335. https://doi.org/10.1016/j.polymdegradstab.2005.01.016.
  • Ray, D., and B. K. Sarkar. 2001. “Characterization of Alkali-Treated Jute Fibers for Physical and Mechanical Properties.” Journal of Applied Polymer Science 80 (7): 1013–1020. https://doi.org/10.1002/app.1184.
  • Roma, L. C., Jr, L. S. Martello, and H. Savastano Jr. 2008. “Evaluation of Mechanical, Physical and Thermal Performance of Cement-Based Tiles Reinforced with Vegetable Fibers.” Construction and Building Materials 22 (4): 668–674. https://doi.org/10.1016/j.conbuildmat.2006.10.001.
  • Samouh, H., E. Rozière, and A. Loukili. 2019. “Experimental and Numerical Study of the Relative Humidity Effect on Drying Shrinkage and Cracking of Self-Consolidating Concrete.” Cement and Concrete Research 115:519–529. https://doi.org/10.1016/j.cemconres.2018.08.008.
  • Sanchez-Echeverri, L. A., J. A. Medina-Perilla, and E. Ganjian. 2020. “Nonconventional Ca(OH)2 Treatment of Bamboo for the Reinforcement of Cement Composites.” Materials 13 (8): 1892. https://doi.org/10.3390/ma13081892.
  • Savastano, H., Jr, S. F. Santos, M. Radonjic, and W. O. Soboyejo. 2009. “Fracture and Fatigue of Natural Fiber-Reinforced Cementitious Composites.” Cement and Concrete Composites 31 (4): 232–243. https://doi.org/10.1016/j.cemconcomp.2009.02.006.
  • Sudin, R., and N. Swamy. 2006. “Bamboo and Wood Fibre Cement Composites for Sustainable Infrastructure Regeneration.” Journal of Materials Science 41 (21): 6917–6924. https://doi.org/10.1007/s10853-006-0224-3.
  • Wang, F., S. Zhou, L. Li, and X. Zhang. 2018. “Changes in the Morphological–Mechanical Properties and Thermal Stability of Bamboo Fibers During the Processing of Alkaline Treatment.” Polymer Composites 39 (S3): 1421–1428. https://doi.org/10.1002/pc.24332.
  • Yan, L., and N. Chouw. 2014. “Dynamic and Static Properties of Flax Fibre Reinforced Polymer Tube Confined Coir Fibre Reinforced Concrete.” Journal of Composite Materials 48 (13): 1595–1610. https://doi.org/10.1177/002199831348815.
  • Yan, L., N. Chouw, L. Huang, and B. Kasal. 2016. “Effect of Alkali Treatment on Microstructure and Mechanical Properties of Coir Fibres, Coir Fibre Reinforced-Polymer Composites and Reinforced-Cementitious Composites.” Construction and Building Materials 112:168–182. https://doi.org/10.1016/j.conbuildmat.2016.02.182.
  • Yan, L., N. Chouw, and K. Jayaraman. 2014. “Effect of Column Parameters on Flax FRP Confined Coir Fibre Reinforced Concrete.” Construction and Building Materials 55:299–312. https://doi.org/10.1016/j.conbuildmat.2014.01.061.
  • Yang, T.-C., M.-J. Chung, and C.-H. Yeh. 2023. “Effects of Flexural Configuration and Thermal Modification on the Physical and Flexural Properties of Makino Bamboo (Phyllostachys makinoi).” Wood Material Science & Engineering 18 (2): 402–411. https://doi.org/10.1080/17480272.2022.2038266.
  • Yang, T.-C., Z.-S. Hua, and H.-T. Hu. 2023. “Physical and Mechanical Properties of the Cement Composite with Makino Bamboo Fibers Disintegrated by Alkali Treatment.” Wood Material Science & Engineering 18 (3): 1076–1085. https://doi.org/10.1080/17480272.2022.2106447.
  • Yang, T.-C., and T.-Y. Lee. 2018. “Effects of Density and Heat Treatment on the Physico-Mechanical Properties of Unidirectional Round Bamboo Stick Boards (UBSBs) Made of Makino Bamboo (Phyllostachys makinoi).” Construction and Building Materials 187:406–413. https://doi.org/10.1016/j.conbuildmat.2018.07.182.
  • Yan, L., S. Su, and N. Chouw. 2015. “Microstructure, Flexural Properties and Durability of Coir Fibre Reinforced Concrete Beams Externally Strengthened with Flax FRP Composites.” Compos Part B: Engineering 80:343–354. https://doi.org/10.1016/j.compositesb.2015.06.011.
  • Yates, D. J. C. 1954. “The Expansion of Porous Glass on the Adsorption of Non-Polar Gases.” Proceedings of the Royal Society A–Mathematical Physical and Engineering Sciences 224 (1159): 526–544. https://doi.org/10.1098/rspa.1954.0177.
  • Yeh, C.-H., and T.-C. Yang. 2020. “Utilization of Waste Bamboo Fibers in Thermoplastic Composites: Influence of the Chemical Composition and Thermal Decomposition Behavior.” Polymers 12 (3): 636. https://doi.org/10.3390/polym12030636.
  • Yin, C., and X. Li. 2022. “Influence of Alkali Treatment on Properties of Bamboo Portland Cement Particle Board.” American Chemical Society Omega 7 (18): 16043–16048. https://doi.org/10.1021/acsomega.2c01142.
  • Young, R. A. 1976. “Wettability of Wood Pulp Fibers: Applicability of Methodology.” Wood and Fiber Science 8:120–128. https://wfs.swst.org/index.php/wfs/article/view/694.
  • Zhang, Z., and U. Angst. 2022. “Microstructure and moisture transport in carbonated cement-based materials incorporating cellulose nanofibrils.” Cement and Concrete Research 162:106990. https://doi.org/10.1016/j.cemconres.2022.106990.
  • Zhang, X., L. Pel, F. Gauvin, and D. Smeudlers. 2021. “Reinforcing Mechanisms of Coir Fibers in Light-Weight Aggregate Concrete.” Materials 14 (3): 699. https://doi.org/10.3390/ma14030699.
  • Zukowski, B., F. de Andrade Silva, and R. D. Toledo Filho. 2018. “Design of Strain Hardening Cement-Based Composites with Alkali Treated Natural curauá Fiber.” Cement and Concrete Composites 89:150–159. https://doi.org/10.1016/j.cemconcomp.2018.03.006.