415
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Discovering Natural Fiber-Insulation Boards and Natural Adhesives, Focused on a Polylactic Acid (PLA) Application – a Review

, , , &

References

  • Abedom, F., S. Sakthivel, D. Asfaw, B. Melese, E. Solomon, S. S. Kumar, and A. Caggiano. 2021. “Development of Natural Fiber Hybrid Composites Using Sugarcane Bagasse and Bamboo Charcoal for Automotive Thermal Insulation Materials.” Advances in Materials Science and Engineering 2021:1–30. https://doi.org/10.1155/2021/2508840.
  • Abu-Jdayil, B., M. S. Barkhad, A.-H. I. Mourad, and M. Z. Iqbal. 2021. “Date Palm Wood Waste-Based Composites for Green Thermal Insulation Boards.” Journal of Building Engineering 43:103224. https://doi.org/10.1016/j.jobe.2021.103224.
  • Ahmed, A., and A. Qayoum. 2021. “Investigation on the Thermal Degradation, Moisture Absorption Characteristics and Antibacterial Behavior of Natural Insulation Materials.” Materials for Renewable and Sustainable Energy 10 (1): 4. https://doi.org/10.1007/s40243-021-00188-8.
  • Al Abdallah, H., B. Abu-Jdayil, and M. Z. Iqbal. 2022. “Improvement of Mechanical Properties and Water Resistance of Bio-Based Thermal Insulation Material via Silane Treatment.” Journal of Cleaner Production 346:131242. https://doi.org/10.1016/j.jclepro.2022.131242.
  • Alabdulkarem, A., M. Ali, G. Iannace, S. Sadek, and R. Almuzaiqer. 2018. “Thermal Analysis, Microstructure and Acoustic Characteristics of Some Hybrid Natural Insulating Materials.” Construction and Building Materials 187:185–196. https://doi.org/10.1016/j.conbuildmat.2018.07.213.
  • Alara, O. R., N. H. Abdurahman, and C. I. Ukaegbu. 2021. “Extraction of Phenolic Compounds: A Review.” Current Research in Food Science 4:200–214. https://doi.org/10.1016/j.crfs.2021.03.011.
  • Ali, M. 2016. “Microstructure, Thermal Analysis and Acoustic Characteristics of Calotropis Procera (Apple of Sodom) Fibers.” Journal of Natural Fibers 13 (3): 343–352. https://doi.org/10.1080/15440478.2015.1029198.
  • Ali, M. E., and A. Alabdulkarem. 2017. “On Thermal Characteristics and Microstructure of a New Insulation Material Extracted from Date Palm Trees Surface Fibers.” Construction and Building Materials 138:276–284. https://doi.org/10.1016/j.conbuildmat.2017.02.012.
  • Ali, M., A. Alabdulkarem, A. Nuhait, K. Al-Salem, R. Almuzaiqer, O. Bayaquob, H. Salah, A. Alsaggaf, and Z. Algafri. 2021. “Thermal Analyses of Loose Agave, Wheat Straw Fibers and Agave/Wheat Straw As New Hybrid Thermal Insulating Materials for Buildings.” Journal of Natural Fibers 18 (12): 2173–2188. https://doi.org/10.1080/15440478.2020.1724232.
  • Ali, M., A. Alabdulkarem, A. Nuhait, K. Al-Salem, G. Iannace, and R. Almuzaiqer. 2022. “Characteristics of Agro Waste Fibers As New Thermal Insulation and Sound Absorbing Materials: Hybrid of Date Palm Tree Leaves and Wheat Straw Fibers.” Journal of Natural Fibers 19 (13): 6576–6594. https://doi.org/10.1080/15440478.2021.1929647.
  • Ali, M., A. Alabdulkarem, A. Nuhait, K. Al-Salem, G. Iannace, R. Almuzaiqer, A. Al-Turki, F. Al-Ajlan, Y. Al-Mosabi, and A. Al-Sulaimi. 2020. “Thermal and Acoustic Characteristics of Novel Thermal Insulating Materials Made of Eucalyptus Globulus Leaves and Wheat Straw Fibers.” Journal of Building Engineering 32:101452. https://doi.org/10.1016/j.jobe.2020.101452.
  • Ali, M., Z. Al-Suhaibani, R. Almuzaiqer, K. Al-Salem, A. Nuhait, F. Algubllan, M. Al-Howaish, A. Aloraini, and I. Alqahtani. 2023. “Sunflower and Watermelon Seeds and Their Hybrids with Pineapple Leaf Fibers As New Novel Thermal Insulation and Sound-Absorbing Materials.” Polymers 15 (22): 4422. https://doi.org/10.3390/polym15224422.
  • Ali, M. E.-S., and O. M. Zeitoun. 2012. “Discovering and Manufacturing a New Natural Insulating Material Extracted from a Plant Growing Up in Saudi Arabia.” Journal of Engineered Fibers and Fabrics 7 (4): 155892501200700. https://doi.org/10.1177/155892501200700405.
  • Altez Basaldúa, A. G., A. J. Cárdenas Oscanoa, M. Araujo Flores, and B. C. Sulbarán Rangel. 2020. “Efecto de pudrición por hongos en las propiedades físicas y mecánicas del compuesto bambú-polipropileno.” Revista Mexicana de Ciencias Forestales 11 (62). https://doi.org/10.29298/rmcf.v11i62.757.
  • Antlauf, M., N. Boulanger, L. Berglund, K. Oksman, and O. Andersson. 2021. “Thermal Conductivity of Cellulose Fibers in Different Size Scales and Densities.” Biomacromolecules 22 (9): 3800–3809. https://doi.org/10.1021/acs.biomac.1c00643.
  • Arango-Perez, S. A., H. E. Gonzales-Mora, S. P. Ponce-Alvarez, A. A. Gutarra-Espinoza, and A. J. Cárdenas-Oscanoa. 2023. “Assessment of Cellulose Nanofibers from Bolaina Blanca Wood Obtained at Three Shaft Heights.” Maderas-Cienc Tecnol 26. https://doi.org/10.22320/s0718221x/2024.18.
  • Arjmandi, R., A. Hassan, and Z. Zakaria. 2017. “Polylactic Acid Green Nanocomposites for Automotive Applications.” In Green Biocomposites: Design and Applications, edited by M. Jawaid, M. S. Salit, and O. Y. Alothman, 193–208. Cham: Springer International Publishing. ISBN 978-3-319-49382-4.
  • Arul Jeya Kumar, A., and M. Prakash. 2020. “Thermal Properties of Basalt/Cissus Quadrangularis Hybrid Fiber Reinforced Polylactic Acid Biomedical Composites.” Journal of Thermal Analysis and Calorimetry 141 (2): 717–725. https://doi.org/10.1007/s10973-019-09058-y.
  • Asaithambi, B., G. Ganesan, and S. Ananda Kumar. 2014. “Bio-Composites: Development and Mechanical Characterization of Banana/Sisal Fibre Reinforced Poly Lactic Acid (PLA) Hybrid Composites.” Fibers and Polymers 15 (4): 847–854. https://doi.org/10.1007/s12221-014-0847-y.
  • Asdrubali, F., F. D’Alessandro, and S. Schiavoni. 2015. “A Review of Unconventional Sustainable Building Insulation Materials.” Sustainable Materials and Technologies 4:1–17. https://doi.org/10.1016/j.susmat.2015.05.002.
  • Asdrubali, F., L. Evangelisti, C. Guattari, M. Roncone, and D. Milone. 2023. “Experimental Analysis of the Thermal Performance of Wood Fiber Insulating Panels.” Sustainability 15 (3): 1963. https://doi.org/10.3390/su15031963.
  • Ashothaman, A., J. Sudha, and N. Senthilkumar. 2023. “A Comprehensive Review on Biodegradable Polylactic Acid Polymer Matrix Composite Material Reinforced with Synthetic and Natural Fibers.” Materials Today: Proceedings 80:2829–2839. https://doi.org/10.1016/j.matpr.2021.07.047.
  • ASTM C1045-19. 2019. Standard Practice for Calculating Thermal Transmission Properties Under Steady-State Conditions.
  • ASTM C165-17. 2017. Standard Test Method for Measuring Compressive Properties of Thermal Insulations.
  • ASTM C209-20. 2020. Standard Test Methods for Cellulosic Fiber Insulating Board.
  • ASTM C518-21. 2021 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus.
  • ASTM E1131-20. 2020. Standard Test Method for Compositional Analysis by Thermogravimetry.
  • ASTM E1333-22. 2022. Standard Test Method for Determining Formaldehyde Concentrations in Air and Emission Rates from Wood Products Using a Large Chamber.
  • ASTM E1354-23. 2023. Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter.
  • Asyraf, M. R. M., M. Rafidah, A. Azrina, and M. R. Razman. 2021. “Dynamic Mechanical Behaviour of Kenaf Cellulosic Fibre Biocomposites: A Comprehensive Review on Chemical Treatments.” Cellulose 28:2675–2695. https://doi.org/10.1007/s10570-021-03710-3.
  • Baghaei, B., M. Skrifvars, M. Rissanen, and S. K. Ramamoorthy. 2014. “Mechanical and Thermal Characterization of Compression Moulded Polylactic Acid Natural Fiber Composites Reinforced with Hemp and Lyocell Fibers.” Journal of Applied Polymer Science 131 (15). https://doi.org/10.1002/app.40534.
  • Bajpai, P. K., I. Singh, and J. Madaan. 2014. “Development and Characterization of PLA-Based Green Composites: A Review.” Journal of Thermoplastic Composite Materials 27 (1): 52–81. https://doi.org/10.1177/0892705712439571.
  • Barkhad, M. S., B. Abu-Jdayil, M. Z. Iqbal, and A.-H. I. Mourad. 2020. “Thermal Insulation Using Biodegradable Poly(Lactic Acid)/Date Pit Composites.” Construction and Building Materials 261:120533. https://doi.org/10.1016/j.conbuildmat.2020.120533.
  • Barkhad, M. S., B. Abu-Jdayil, A. H. I. Mourad, and M. Z. Iqbal. 2020. “Thermal Insulation and Mechanical Properties of Polylactic Acid (PLA) at Different Processing Conditions.” Polymers 12 (9): 2091. https://doi.org/10.3390/polym12092091.
  • Bello, D., S. R. Woskie, R. P. Streicher, Y. Liu, M. H. Stowe, E. A. Eisen, M. J. Ellenbecker, J. Sparer, F. Youngs, M. R. Cullen. 2004. “Polyisocyanates in Occupational Environments: A Critical Review of Exposure Limits and Metrics.” American Journal of Industrial Medicine 46 (5): 480–491. https://doi.org/10.1002/ajim.20076.
  • Berardi, U., and G. Iannace. 2015. “Acoustic Characterization of Natural Fibers for Sound Absorption Applications.” Building and Environment 94:840–852. https://doi.org/10.1016/j.buildenv.2015.05.029.
  • Bledzki, A. K., and A. Jaszkiewicz. 2010. “Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibres – a Comparative Study to PP.” Composites Science and Technology 70 (12): 1687–1696. https://doi.org/10.1016/j.compscitech.2010.06.005.
  • Bumanis, G., L. Vitola, I. Pundiene, M. Sinka, and D. Bajare. 2020. “Gypsum, Geopolymers, and Starch—Alternative Binders for Bio-Based Building Materials: A Review and Life-Cycle Assessment.” Sustainability 12 (14): 5666. https://doi.org/10.3390/su12145666.
  • Caniato, M., A. Marzi, S. Monteiro Da Silva, and A. Gasparella. 2021. “A Review of the Thermal and Acoustic Properties of Materials for Timber Building Construction.” Journal of Building Engineering 43:103066. https://doi.org/10.1016/j.jobe.2021.103066.
  • Cárdenas Oscanoa, A. J., F. J. Fuentes Talavera, J. R. Robledo Ortiz, J. C. Meza Contreras, and R. Gonzáles Cruz. 2020. “Efecto del intemperismo y biodeterioro en compuestos plástico-madera (CPM) elaborados con borato de zinc.” Revista Mexicana de Ciencias Forestales 12 (63). https://doi.org/10.29298/rmcf.v12i63.801.
  • Cetiner, I., and A. D. Shea. 2018. “Wood Waste As an Alternative Thermal Insulation for Buildings.” Energy and Buildings 168:374–384. https://doi.org/10.1016/j.enbuild.2018.03.019.
  • Cheng, K. 2021. “Wood Tannins.“ In Cheng, K., Hagiopol, C. (Eds.), Natural Polyphenols from Wood (pp. 85–121). NX Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-822205-8.00009-8.
  • Cheng, Y., S. Deng, P. Chen, and R. Ruan. 2009. “Polylactic Acid (PLA) Synthesis and Modifications: A Review.” Frontiers of Chemistry in China 4 (3): 259–264. https://doi.org/10.1007/s11458-009-0092-x.
  • Choi, H. Y., and J. S. Lee. 2012. “Effects of Surface Treatment of Ramie Fibers in a Ramie/Poly(Lactic Acid) Composite.” Fibers and Polymers 13 (2): 217–223. https://doi.org/10.1007/s12221-012-0217-6.
  • Cipra Rodriguez, J. A., H. E. Gonzales Mora, and A. J. Cárdenas Oscanoa. 2022. “Characterization of MDF Produced with Bolaina (Guazuma Crinita Mart.) Wood Residues from Plantation.” Madera y Bosques 28 (3): e2832433. https://doi.org/10.21829/myb.2022.2832433.
  • Cisneros‐López, E. O., A. A. Pérez‐Fonseca, Y. González‐García, D. E. Ramírez‐Arreola, R. González‐Núñez, D. Rodrigue, and J. R. Robledo‐Ortíz. 2018. “Polylactic Acid–Agave Fiber Biocomposites Produced by Rotational Molding: A Comparative Study with Compression Molding.” Advances in Polymer Technology 37 (7): 2528–2540. https://doi.org/10.1002/adv.21928.
  • Córdova Contreras, A. R., A. J. Cárdenas Oscanoa, and H. E. Gonzáles Mora. 2020. “Caracterización física y mecánica de compuestos de Guazuma crinita Mart. a base de polipropileno virgen.” Revista Mexicana de Ciencias Forestales 11 (57). https://doi.org/10.29298/rmcf.v11i57.621.
  • Cosentino, L., J. Fernandes, and R. Mateus. 2023. “A Review of Natural Bio-Based Insulation Materials.” Energies 16 (12): 4676. https://doi.org/10.3390/en16124676.
  • Dannemann, M., S. Siwek, N. Modler, A. Wagenführ, and J. Tietze. 2021. “Damping Behavior of Thermoplastic Organic Sheets with Continuous Natural Fiber-Reinforcement.” Vibration 4 (2): 529–536. https://doi.org/10.3390/vibration4020031.
  • De Ligne, L., J. Van Acker, J. M. Baetens, S. Omar, B. De Baets, L. G. Thygesen, J. Van den Bulcke, and E. E. Thybring. 2022. “Moisture Dynamics of Wood-Based Panels and Wood Fibre Insulation Materials.” Frontiers in Plant Science 13:951175. https://doi.org/10.3389/fpls.2022.951175.
  • DIN 4109-1:2018-01. 2018. Sound Insulation in Buildings - Part 1: Minimum Requirements.
  • DIN EN 13171:2015-04. 2004. Thermal Insulation Products for Buildings - Factory Made Wood Fibre (WF) Products - Specification; German Version EN 13171:2012+A1:2015. Berlin: Deutscher Institute für Normung.
  • DIN-EN-1607:2013-05. 2013. Thermal Insulating Products for Building Awpplications - Determination of Tensile Strength Perpendicular to Faces. Berlin: Deutscher Institute für Normung.
  • DIN EN 717-1:2005-01. 2004. German Version EN 717-1. Berlin: Deutscher Institute für Normung.
  • Dunky, M. 2021. “Wood Adhesives Based on Natural Resources: A Critical Review: Part III. Tannin‐ and Lignin‐Based Adhesives.” In Progress in Adhesion and Adhesives, K. L. Mittal edited by, 383–529. Hoboken, New Jersey, U.S: Wiley. ISBN 978-1-119-84665-9.
  • El Messiry, M., and Y. Ayman. 2022. “Investigation of Sound Transmission Loss of Natural Fiber/Rubber Crumbs Composite Panels.” Journal of Industrial Textiles 51 (3_suppl): 5347S–5369S. https://doi.org/10.1177/15280837211039574.
  • Euring, M., A. Kirsch, and A. Kharazipour. 2015. “Hot-Air/hot-Steam Process for the Production of Laccase-Mediator-System Bound Wood Fiber Insulation Boards.” Bio Resources 10 (2): 3541–3552. https://doi.org/10.15376/biores.10.2.3541-3552.
  • Euring, M., K. Ostendorf, M. Rühl, and U. Kües. 2022. “Enzymatic Oxidation of Ca-Lignosulfonate and Kraft Lignin in Different Lignin-Laccase-Mediator-Systems and MDF Production.” Frontiers in Bioengineering and Biotechnology 9:788622. https://doi.org/10.3389/fbioe.2021.788622.
  • Fackler, K., T. Kuncinger, T. Ters, and E. Srebotnik. 2008. “Laccase-Catalyzed Functionalization with 4-Hydroxy-3-Methoxybenzylurea Significantly Improves Internal Bond of Particle Boards.” hfsg 62 (2): 223–229. https://doi.org/10.1515/HF.2008.045.
  • Farah, S., D. G. Anderson, and R. Langer. 2016. “Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review.” Advanced Drug Delivery Reviews 107:367–392. https://doi.org/10.1016/j.addr.2016.06.012.
  • Felby, C., J. Hassingboe, and M. Lund. 2002. “Pilot-Scale Production of Fiberboards Made by Laccase Oxidized Wood Fibers: Board Properties and Evidence for Cross-Linking of Lignin.” Enzyme and Microbial Technology 31 (6): 736–741. https://doi.org/10.1016/S0141-0229(02)00111-4.
  • Ferdosian, F., Z. Pan, G. Gao, and B. Zhao. 2017. “Bio-Based Adhesives and Evaluation for Wood Composites Application.” Polymers 9 (12): 70. https://doi.org/10.3390/polym9020070.
  • Feron, V., B. Kittel, C. Kuper, H. Ernst, S. Rittinghausen, H. Muhle, W. Koch, A. Gamer, A. Mallett, and H. Hoffmann. 2001. “Chronic Pulmonary Effects of Respirable Methylene Diphenyl Diisocyanate (MDI) Aerosol in Rats: Combination of Findings from Two Bioassays.” Aerosol in Rats: Combination of Findings from Two Bioassays Archives of Toxicology 75 (3): 159–175. https://doi.org/10.1007/s002040100223.
  • Finnerty, J., S. Rowe, T. Howard, S. Connolly, C. Doran, D. M. Devine, N. M. Gately, V. Chyzna, A. Portela, G. S. N. Bezerra. 2023. “Effect of Mechanical Recycling on the Mechanical Properties of PLA-Based Natural Fiber-Reinforced Composites.” Journal of Composites Science 7 (4): 141. https://doi.org/10.3390/jcs7040141.
  • Foyer, G., B.-H. Chanfi, B. Boutevin, S. Caillol, and G. David. 2016. “New Method for the Synthesis of Formaldehyde-Free Phenolic Resins from Lignin-Based Aldehyde Precursors.” European Polymer Journal 74:296–309. https://doi.org/10.1016/j.eurpolymj.2015.11.036.
  • Gaujena, B., V. Agapovs, A. Borodinecs, and K. Strelets. 2020. “Analysis of Thermal Parameters of Hemp Fiber Insulation.” Energies 13 (23): 6385. https://doi.org/10.3390/en13236385.
  • GB/T 11718-2021. 2021. Medium Density Fibreboard. China: Chinese National Standard.
  • Gonçalves, D., J. M. Bordado, A. C. Marques, and R. Galhano Dos Santos. 2021. “Non-Formaldehyde, Bio-Based Adhesives for Use in Wood-Based Panel Manufacturing Industry—A Review.” Polymers 13 (23): 4086. https://doi.org/10.3390/polym13234086.
  • Gößwald, J., M.-C. Barbu, A. Petutschnigg, and E. M. Tudor. 2021. “Binderless Thermal Insulation Panels Made of Spruce Bark Fibres.” Polymers 13 (11): 1799. https://doi.org/10.3390/polym13111799.
  • Gunti, R., A. V. Ratna Prasad, and A. V. S. S. K. S. Gupta. 2018. “Mechanical and Degradation Properties of Natural Fiber-Reinforced PLA Composites: Jute, Sisal, and Elephant Grass.” Polymer Composites 39 (4): 1125–1136. https://doi.org/10.1002/pc.24041.
  • Hongisto, V., P. Saarinen, R. Alakoivu, and J. Hakala. 2022. “Acoustic Properties of Commercially Available Thermal Insulators − an Experimental Study.” Journal of Building Engineering 54:104588. https://doi.org/10.1016/j.jobe.2022.104588.
  • Huang, C., Z. Peng, J. Li, X. Li, X. Jiang, and Y. Dong. 2022. “Unlocking the Role of Lignin for Preparing the Lignin-Based Wood Adhesive: A Review.” Industrial Crops and Products 187:115388. https://doi.org/10.1016/j.indcrop.2022.115388.
  • Hu, R., and J.-K. Lim. 2007. “Fabrication and Mechanical Properties of Completely Biodegradable Hemp Fiber Reinforced Polylactic Acid Composites.” Journal of Composite Materials 41 (13): 1655–1669. https://doi.org/10.1177/0021998306069878.
  • Hunt, C. G., C. R. Frihart, M. Dunky, and A. Rohumaa. 2018. “Understanding Wood Bonds–Going Beyond What Meets the Eye: A Critical Review.” Reviews of Adhesion and Adhesives 6 (4): 369–440. https://doi.org/10.7569/RAA.2018.097312.
  • Hussin, M. H., N. H. Abd Latif, T. S. Hamidon, N. N. Idris, R. Hashim, J. N. Appaturi, N. Brosse, I. Ziegler-Devin, L. Chrusiel, W. Fatriasari. 2022. “Latest Advancements in High-Performance Bio-Based Wood Adhesives: A Critical Review.” Journal of Materials Research and Technology 21:3909–3946. https://doi.org/10.1016/j.jmrt.2022.10.156.
  • Ilyas, R. A., S. M. Sapuan, M. M. Harussani, M. Y. A. Y. Hakimi, M. Z. M. Haziq, M. S. N. Atikah, M. R. M. Asyraf, M. R. Ishak, M. R. Razman, N. M. Nurazzi. 2021. “Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications.” Polymers 13 (8): 1326. https://doi.org/10.3390/polym13081326.
  • Imken, A. A. P., R. Kraft, and C. Mai. 2022. “Production and Characterisation of Wood-Fibre Insulation Boards (WFIB) from Hardwood Fibres and Fibre Blends.” Wood Material Science & Engineering 17 (6): 802–808. https://doi.org/10.1080/17480272.2021.1958919.
  • Imken, A. A. P., B. Plinke, and C. Mai. 2021. “Characterisation of Hardwood Fibres Used for Wood Fibre Insulation Boards (WFIB).” European Journal of Wood and Wood Products 79 (4): 915–924. https://doi.org/10.1007/s00107-021-01698-y.
  • Ismail, B. P., L. Senaratne-Lenagala, A. Stube, and A. Brackenridge. 2020. “Protein Demand: Review of Plant and Animal Proteins Used in Alternative Protein Product Development and Production.” Animal Frontiers 10 (4): 53–63. https://doi.org/10.1093/af/vfaa040.
  • ISO 10140-1:2021. 2021. Acoustics Laboratory Measurement of Sound Insulation of Building Elements. Part 1: Application Rules for Specific Products.
  • ISO 11357-1. 2023. Plastics Differential Scanning Calorimetry (DSC). Part 1: General Principles 2023.
  • ISO 11358-1:2022. 2022. Plastics. Thermogravimetry (TG) of Polymers. Part 1: General Principles.
  • ISO 12460-1:2016. 2016. Wood-Based Panels. Determination of Formaldehyde Release. Part 1: Formaldehyde Emission by the 1-Cubic-Metre Chamber Method.
  • ISO 2896:2001. 2001. Rigid Cellular Plastics Determination of Water Absorption.
  • ISO 5660-1:2015. 2015. Reaction-To-Fire Tests Heat Release, Smoke Production and Mass Loss Rate. Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement).
  • ISO 8301:1991. 1991. Heat Flow Meter Apparatus. Geneva, Switzerland: International Organization for Standarization.
  • Jiang, N., T. Yu, Y. Li, T. J. Pirzada, and T. J. Marrow. 2019. “Hygrothermal Aging and Structural Damage of a Jute/Poly (Lactic Acid) (PLA) Composite Observed by X-Ray Tomography.” Composites Science and Technology 173:15–23. https://doi.org/10.1016/j.compscitech.2019.01.018.
  • Kamke, F. A., and J. A. Nairn. 2023. “Advances in Structural Wood Products Adhesive Bonding.” In Advances in Structural Adhesive Bonding, 417–455, NX Amsterdam, The Netherlands: Elsevier.
  • Khan, G. M. A., M. Terano, M. A. Gafur, and M. S. Alam. 2016. “Studies on the Mechanical Properties of Woven Jute Fabric Reinforced Poly(l-Lactic Acid) Composites.” Journal of King Saud University - Engineering Sciences 28 (1): 69–74. https://doi.org/10.1016/j.jksues.2013.12.002.
  • Kharazipour, A., and M. Euring. 2013. Verfahren Zur Herstellung von Holz- Und/Oder Verbundwerkstoffen. EP2819819A1. https://patents.google.com/patent/EP2819819A1.
  • Kharazipour, A., A. Huettermann, and H. D. Luedemann. 1997. “Enzymatic Activation of Wood Fibres As a Means for the Production of Wood Composites.” Journal of Adhesion Science and Technology 11 (3): 419–427. https://doi.org/10.1163/156856197X00796.
  • Kirsch, A., K. Ostendorf, and M. Euring. 2018. “Improvements in the Production of Wood Fiber Insulation Boards Using Hot-Air/hot-Steam Process.” European Journal of Wood and Wood Products 76 (4): 1233–1240. https://doi.org/10.1007/s00107-018-1306-z.
  • Kočí, V., M. Jerman, Z. Pavlík, J. Maděra, J. Žák, and R. Černý. 2020. “Interior Thermal Insulation Systems Based on Wood Fiberboards: Experimental Analysis and Computational Assessment of Hygrothermal and Energy Performance in the Central European Climate.” Energy and Buildings 222:110093. https://doi.org/10.1016/j.enbuild.2020.110093.
  • Korjenic, A., J. Zach, and J. Hroudová. 2016. “The Use of Insulating Materials Based on Natural Fibers in Combination with Plant Facades in Building Constructions.” Energy and Buildings 116:45–58. https://doi.org/10.1016/j.enbuild.2015.12.037.
  • Krug, D., A. Wagenfuhr, A. Weber, and C. Wenderdel. 2023. “Fiber-Based Materials.” In Springer Handbook of Wood Science and Technology, 2069. Salmon Tower Building New York City, United States: Springer.
  • KS F 3200. 2021. Fiberboards. Korean Standard for Medium-Density Fiberboard.
  • KS L 9016. 2022. Test Methods for Thermal Conductivity of Insulation Materials.
  • Kudanga, T., G. S. Nyanhongo, G. M. Guebitz, and S. Burton. 2011. “Potential Applications of Laccase-Mediated Coupling and Grafting Reactions: A Review.” Enzyme and Microbial Technology 48 (3): 195–208. https://doi.org/10.1016/j.enzmictec.2010.11.007.
  • Kumar, D., M. Alam, P. X. W. Zou, J. G. Sanjayan, and R. A. Memon. 2020. “Comparative Analysis of Building Insulation Material Properties and Performance.” Renewable and Sustainable Energy Reviews 131:110038. https://doi.org/10.1016/j.rser.2020.110038.
  • Kuqo, A., and C. Mai. 2022. “Seagrass Leaves: An Alternative Resource for the Production of Insulation Materials.” Materials 15 (19): 6933. https://doi.org/10.3390/ma15196933.
  • Kuqo, A., and C. Mai. 2023. “Flexible Insulation Mats from Zostera Marina Seagrass.” Journal of Natural Fibers 20 (1): 2154303. https://doi.org/10.1080/15440478.2022.2154303.
  • Lee, M., S.-M. Lee, and E.-C. Kang. 2019. “Changes in Characteristics of Wood Fiber Insulation Board According to Density.” Bio Resources 14 (3): 6529–6543. https://doi.org/10.15376/biores.14.3.6529-6543.
  • Lee, M., S.-M. Lee, E.-C. Kang, and D.-W. Son. 2019. “Combustibility and Characteristics of Wood-Fiber Insulation Boards Prepared with Four Different Adhesives.” Bio Resources 14 (3): 6316–6330. https://doi.org/10.15376/biores.14.3.6316-6330.
  • Li, X., Y. Lin, M. Liu, L. Meng, and C. Li. 2023. “A Review of Research and Application of Polylactic Acid Composites.” Journal of Applied Polymer Science 140 (7): e53477. https://doi.org/10.1002/app.53477.
  • Lisowski, P., and M. A. Glinicki. 2023. “Promising Biomass Waste–Derived Insulation Materials for Application in Construction and Buildings.” Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-05192-8.
  • Marand, Å., J. Dahlin, D. Karlsson, G. Skarping, and M. Dalene. 2004. “Determination of Technical Grade Isocyanates Used in the Production of Polyurethane Plastics.” Journal of Environmental Monitoring 6 (7): 606–614. https://doi.org/10.1039/B402775B.
  • Marques, A., A. Mocanu, N. Tomić, S. Balos, E. Stammen, A. Lundevall, S. Abrahami, R. Günther, J. De Kok, and S. Teixeira De Freitas. 2020. “Review on Adhesives and Surface Treatments for Structural Applications: Recent Developments on Sustainability and Implementation for Metal and Composite Substrates.” Materials 13 (24): 5590. https://doi.org/10.3390/ma13245590.
  • Mat Zubir, N. H., S. T. Sam, R. Santiagoo, N. Z. Noimam, and J. Wang. 2016. “Tensile Properties of Rice Straw Fiber Reinforced Poly(Lactic Acid) Biocomposites.” Advanced Materials Research 1133:598–602. https://doi.org/10.4028/www.scientific.net/AMR.1133.598.
  • McKeown, P., and M. D. Jones. 2020. “The Chemical Recycling of PLA: A Review.” Sustainable Chemistry 1 (1): 1–22. https://doi.org/10.3390/suschem1010001.
  • Mehrzad, S., E. Taban, P. Soltani, S. E. Samaei, and A. Khavanin. 2022. “Sugarcane Bagasse Waste Fibers As Novel Thermal Insulation and Sound-Absorbing Materials for Application in Sustainable Buildings.” Building and Environment 211:108753. https://doi.org/10.1016/j.buildenv.2022.108753.
  • Mirski, R., D. Dziurka, M. Kuliński, and A. Derkowski. 2021. “Lightweight Insulation Boards Based on Lignocellulosic Particles Glued with Agents of Natural Origin.” Materials 14 (12): 3219. https://doi.org/10.3390/ma14123219.
  • Mirski, R., D. Dziurka, and A. Trociński. 2018. “Insulation Properties of Boards Made from Long Hemp (Cannabis Sativa L.) Fibers.” Bio Resources 13 (3): 6591–6599. https://doi.org/10.15376/biores.13.3.6591-6599.
  • Motru, S., V. H. Adithyakrishna, J. Bharath, and R. Guruprasad. 2020. “Development and Evaluation of Mechanical Properties of Biodegradable PLA/Flax Fiber Green Composite Laminates.” Materials Today: Proceedings 24:641–649. https://doi.org/10.1016/j.matpr.2020.04.318.
  • Muller, C., M. Euring, and A. Kharazipour. 2009. “Enzymatic Modification of Wood Fibres for Activating Their Ability of Self Bonding.” International Journal of Materials & Product Technology 36 (1/2/3/4): 189. https://doi.org/10.1504/IJMPT.2009.027830.
  • Murariu, M., and P. Dubois. 2016. “PLA Composites: From Production to Properties.” Advanced Drug Delivery Reviews 107:17–46. https://doi.org/10.1016/j.addr.2016.04.003.
  • Muthuraj, R., C. Lacoste, P. Lacroix, and A. Bergeret. 2019. “Sustainable Thermal Insulation Biocomposites from Rice Husk, Wheat Husk, Wood Fibers and Textile Waste Fibers: Elaboration and Performances Evaluation.” Industrial Crops and Products 135:238–245. https://doi.org/10.1016/j.indcrop.2019.04.053.
  • Neoh, K. W., K. Y. Tshai, P. S. Khiew, and C. H. Chia. 2012. “Micro Palm and Kenaf Fibers Reinforced PLA Composite: Effect of Volume Fraction on Tensile Strength.” Applied Mechanics and Materials 145:1–5. https://doi.org/10.4028/www.scientific.net/AMM.145.1.
  • Nguyen, D. M., A.-C. Grillet, Q.-B. Bui, T. M. H. Diep, and M. Woloszyn. 2018. “Building Bio-Insulation Materials Based on Bamboo Powder and Bio-Binders.” Construction and Building Materials 186:686–698. https://doi.org/10.1016/j.conbuildmat.2018.07.153.
  • Niemz, P., W. Sonderenger, P. J. Gustafsson, B. Kasal, and T. Polocoser. 2023. “Strength Properties of Wood and Wood-Based Materials. In Niemz, P., Teischinger, A., and Sandberg, D. (Eds.), Springer Handbook of Wood Science and Technology, 2069. Cham, Switzerland: Springer.
  • Niemz, P., W. Sonderenger, T. Keplinger, J. Jiang, and J. Lu. 2023. “Physical Properties of Wood and Wood-Based Materials. In Niemz, P., Teischinger, A., Sandberg, D (Eds.), Springer Handbook of Wood Science and Technology, 2069. Cham, Switzerland: Springer.
  • Nyambo, C., A. K. Mohanty, and M. Misra. 2011. “Effect of Maleated Compatibilizer on Performance of PLA/Wheat Straw-Based Green Composites.” Macromolecular Materials and Engineering 296 (8): 710–718. https://doi.org/10.1002/mame.201000403.
  • Oksman, K., M. Skrifvars, and J.-F. Selin. 2003. “Natural Fibres As Reinforcement in Polylactic Acid (PLA) Composites.” Composites Science and Technology 63 (9): 1317–1324. https://doi.org/10.1016/S0266-3538(03)00103-9.
  • Ostendorf, K., C. Ahrens, A. Beulshausen, J. L. Tene Tayo, and M. Euring. 2021. “On the Feasibility of a pMDI-Reduced Production of Wood Fiber Insulation Boards by Means of Kraft Lignin and Ligneous Canola Hulls.” Polymers 13 (7): 1088. https://doi.org/10.3390/polym13071088.
  • Ostendorf, K., J. Haerkötter, and M. Euring. 2021. “Canola Meal Adhesive for the Production of Wood Fiber Insulation Boards Using Hot-Air/hot-Steam-Process.” Journal of Materials Science Research 10 (1): 28. https://doi.org/10.5539/jmsr.v10n1p28.
  • Ostendorf, K., P. Reuter, and M. Euring. 2020. “Manufacturing Medium-Density Fiberboards and Wood Fiber Insulation Boards Using a Blood Albumin Adhesive on a Pilot Scale.” Bio Resources 15 (1): 1531–1546. https://doi.org/10.15376/biores.15.1.1531-1546.
  • Papadopoulos, A. M. 2005. “State of the Art in Thermal Insulation Materials and Aims for Future Developments.” Energy and Buildings 37 (1): 77–86. https://doi.org/10.1016/j.enbuild.2004.05.006.
  • Park, S.-H., M. Lee, E.-C. Kang, S.-M. Lee, and K. Shim. 2020. “Manufacture of Semi Non-Combustible Wood-Fiber Insulation Boards by Inorganic Fire-Retardant Treatment.” Bio Resources 15 (4): 8235–8248. https://doi.org/10.15376/biores.15.4.8235-8248.
  • Peng, Z., X. Jiang, C. Si, A. Joao Cárdenas-Oscanoa, and C. Huang. 2023. “Advances of Modified Lignin As Substitute to Develop Lignin-Based Phenol-Formaldehyde Resin Adhesives.” ChemSuschem 16 (15): e202300174. https://doi.org/10.1002/cssc.202300174.
  • Pizzi, A. 2015. “Synthetic Adhesives for Wood Panels: Chemistry and Technology.” In Progress in Adhesion and Adhesives, K. L. Mittal edited by, 85–123. Hoboken, New Jersey, U.S: Wiley. ISBN 978-1-119-16219-3.
  • Pizzi, A., and K. Mittal. 2003. Handbook of Adhesive Technology, Revised and Expanded. Boca Raton, Florida, US: CRC Press. ISBN 978-0-8247-0986-0.
  • Pornwannachai, W., J. R. Ebdon, and B. K. Kandola. 2018. “Fire-Resistant Natural Fibre-Reinforced Composites from Flame Retarded Textiles.” Polymer Degradation and Stability 154:115–123. https://doi.org/10.1016/j.polymdegradstab.2018.05.019.
  • Porras, A., A. Maranon, and I. A. Ashcroft. 2016. “Thermo-Mechanical Characterization of Manicaria Saccifera Natural Fabric Reinforced Poly-Lactic Acid Composite Lamina.” Composites Part A, Applied Science and Manufacturing 81:105–110. https://doi.org/10.1016/j.compositesa.2015.11.008.
  • Pycka, S., and K. Roman. 2023. “Comparison of Wood-Based Biocomposites with Polylactic Acid (PLA) Density Profiles by Desaturation and X-Ray Spectrum Methods.” Materials 16 (17): 5729. https://doi.org/10.3390/ma16175729.
  • Raja, P., V. Murugan, S. Ravichandran, L. Behera, R. A. Mensah, S. Mani, A. Kasi, K. B. N. Balasubramanian, G. Sas, H. Vahabi. 2023. “A Review of Sustainable Bio‐Based Insulation Materials for Energy‐Efficient Buildings.” Macromolecular Materials and Engineering 308 (10): 2300086. https://doi.org/10.1002/mame.202300086.
  • Rajeshkumar, G., S. Arvindh Seshadri, G. L. Devnani, M. R. Sanjay, S. Siengchin, J. Prakash Maran, N. A. Al-Dhabi, P. Karuppiah, V. A. Mariadhas, N. Sivarajasekar. 2021. “Environment Friendly, Renewable and Sustainable Poly Lactic Acid (PLA) Based Natural Fiber Reinforced Composites – a Comprehensive Review.” Journal of Cleaner Production 310:127483. https://doi.org/10.1016/j.jclepro.2021.127483.
  • Ramlee, N. A., J. Naveen, and M. Jawaid. 2021. “Potential of Oil Palm Empty Fruit Bunch (OPEFB) and Sugarcane Bagasse Fibers for Thermal Insulation Application–A Review.” Construction and Building Materials 271:121519. https://doi.org/10.1016/j.conbuildmat.2020.121519.
  • Raquez, J.-M., Y. Habibi, M. Murariu, and P. Dubois. 2013. “Polylactide (PLA)-Based Nanocomposites.” Progress in Polymer Science 38 (10–11): 1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014.
  • Raza, M., H. A. Abdallah, A. Abdullah, and B. Abu-Jdayil. 2022. “Date Palm Surface Fibers for Green Thermal Insulation.” Buildings 12 (6): 866. https://doi.org/10.3390/buildings12060866.
  • Sang, L., S. Han, Z. Li, X. Yang, and W. Hou. 2019. “Development of Short Basalt Fiber Reinforced Polylactide Composites and Their Feasible Evaluation for 3D Printing Applications.” Composites Part B: Engineering 164:629–639. https://doi.org/10.1016/j.compositesb.2019.01.085.
  • Schubert, M., M. Luković, and H. Christen. 2020. “Prediction of Mechanical Properties of Wood Fiber Insulation Boards As a Function of Machine and Process Parameters by Random Forest.” Wood Science and Technology 54 (3): 703–713. https://doi.org/10.1007/s00226-020-01184-3.
  • Schubert, M., P. Ruedin, C. Civardi, M. Richter, A. Hach, H. Christen, and W. J. H. van Berkel. 2015. “Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP) for the Production of Wood Fiber Insulation Boards Using Industrial Process Water.” Public Library of Science ONE 10 (6): e0128623. https://doi.org/10.1371/journal.pone.0128623.
  • Schulte, M., I. Lewandowski, R. Pude, and M. Wagner. 2021. “Comparative Life Cycle Assessment of Bio‐Based Insulation Materials: Environmental and Economic Performances.” GCB Bioenergy 13 (6): 979–998. https://doi.org/10.1111/gcbb.12825.
  • Segovia, F., P. Blanchet, N. Auclair, and G. Essoua Essoua. 2020. “Thermo-Mechanical Properties of a Wood Fiber Insulation Board Using a Bio-Based Adhesive As a Binder.” Buildings 10 (9): 152. https://doi.org/10.3390/buildings10090152.
  • Siakeng, R., M. Jawaid, H. Ariffin, S. M. Sapuan, M. Asim, and N. Saba. 2019. “Natural Fiber Reinforced Polylactic Acid Composites: A Review.” Polymer Composites 40 (2): 446–463. https://doi.org/10.1002/pc.24747.
  • Siciliano, A. P., X. Zhao, R. Fedderwitz, K. Ramakrishnan, J. Dai, A. Gong, J. Y. Zhu, J. Kośny, and L. Hu. 2023. “Sustainable Wood-Waste-Based Thermal Insulation Foam for Building Energy Efficiency.” Buildings 13 (4): 840. https://doi.org/10.3390/buildings13040840.
  • Slimani, Z., A. Trabelsi, J. Virgone, and R. Zanetti Freire. 2019. “Study of the Hygrothermal Behavior of Wood Fiber Insulation Subjected to Non-Isothermal Loading.” Applied Sciences 9 (11): 2359. https://doi.org/10.3390/app9112359.
  • Solt, P., J. Konnerth, W. Gindl-Altmutter, W. Kantner, J. Moser, R. Mitter, and H. W. G. Van Herwijnen. 2019. “Technological Performance of Formaldehyde-Free Adhesive Alternatives for Particleboard Industry.” International Journal of Adhesion and Adhesives 94:99–131. https://doi.org/10.1016/j.ijadhadh.2019.04.007.
  • Stapulionienė, R., S. Vaitkus, S. Vėjelis, and A. Sankauskaitė. 2016. “Investigation of Thermal Conductivity of Natural Fibres Processed by Different Mechanical Methods.” International Journal of Precision Engineering and Manufacturing 17 (10): 1371–1381. https://doi.org/10.1007/s12541-016-0163-0.
  • Sujaritjun, W., P. Uawongsuwan, W. Pivsa-Art, and H. Hamada. 2013. “Mechanical Property of Surface Modified Natural Fiber Reinforced PLA Biocomposites.” Energy Procedia 34:664–672. https://doi.org/10.1016/j.egypro.2013.06.798.
  • Sukmawan, R., H. Takagi, and A. N. Nakagaito. 2016. “Strength Evaluation of Cross-Ply Green Composite Laminates Reinforced by Bamboo Fiber.” Composites Part B Engineering 84:9–16. https://doi.org/10.1016/j.compositesb.2015.08.072.
  • Taib, N.-A.-A. B., M. R. Rahman, D. Huda, K. K. Kuok, S. Hamdan, M. K. B. Bakri, M. R. M. B. Julaihi, and A. Khan. 2023. “A Review on Poly Lactic Acid (PLA) As a Biodegradable Polymer.” Polymer Bulletin 80 (2): 1179–1213. https://doi.org/10.1007/s00289-022-04160-y.
  • Takagi, H., S. Kako, K. Kusano, and A. Ousaka. 2007. “Thermal Conductivity of PLA-Bamboo Fiber Composites.” Advanced Composite Materials 16 (4): 377–384. https://doi.org/10.1163/156855107782325186.
  • Tene Tayo, J. L., R. J. Bettelhäuser, and M. Euring. 2022. “Canola Meal As Raw Material for the Development of Bio-Adhesive for Medium Density Fiberboards (MDFs) and Particleboards Production.” Polymers 14 (17): 3554. https://doi.org/10.3390/polym14173554.
  • Thilagavathi, G., N. Muthukumar, S. Neela Krishnanan, and T. Senthilram. 2020. “Development and Characterization of Pineapple Fibre Nonwovens for Thermal and Sound Insulation Applications.” Journal of Natural Fibers 17 (10): 1391–1400. https://doi.org/10.1080/15440478.2019.1569575.
  • Trivedi, A. K., M. Gupta, and H. Singh. 2023. “PLA Based Biocomposites for Sustainable Products: A Review.” Advanced Industrial and Engineering Polymer Research 6 (4): 382–395. https://doi.org/10.1016/j.aiepr.2023.02.002.
  • UNE-EN 12667:2002. 2002 Products of High and Medium Thermal Resistance. Brussels, Belgium: European Standards.
  • UNE-EN 13501-1:2019. 2019. Fire Classification of Construction Products and Building Elements - Part 1: Classification Using Data from Reaction to Fire Tests.
  • UNE-EN 1609:2013. 2013. Thermal Insulating Products for Building Applications - Determination of Short Term Water Absorption by Partial Immersion.
  • UNE-EN 310:1994. 1994. Wood-Based Panels - Determination of Modulus of Elasticity in Bending and of Bending Strength.
  • UNE-EN 323:1994. 1994. Wood-Based Panels - Determination of Density.
  • UNE-EN ISO 11925-2:2021. 2020. Reaction to Fire Tests - Ignitability of Products Subjected to Direct Impingement of Flame - Part 2: Single-Flame Source Test (ISO 11925-2:2020).
  • UNE EN UNE EN 826:2013. 2013. Wärmedämmstoffe Für Das Bauwesen - Bestimmung Des Verhaltens Bei Druckbeanspruchung; Deutsche Fassung EN 826:2013.
  • Vaitkus, S., R. Karpavičiūtė, S. Vėjelis, and L. Lekūnaitė. 2014. “Development and Research of Thermal Insulation Materials from Natural Fibres.” Key Engineering Materials 604:285–288. https://doi.org/10.4028/www.scientific.net/KEM.604.285.
  • van den Oever, M. J. A., B. Beck, and J. Müssig. 2010. “Agrofibre Reinforced Poly(Lactic Acid) Composites: Effect of Moisture on Degradation and Mechanical Properties.” Composites Part A, Applied Science and Manufacturing 41 (11): 1628–1635. https://doi.org/10.1016/j.compositesa.2010.07.011.
  • Wagenführ, A., and R. Emmler, Eds. 2008. Taschenbuch der Holztechnik: mit. 84 Tabellen. Leipzig: Fachbuchverl. im Hanser-Verl. ISBN 978-3-446-22852-8.
  • Wang, H., E. Hassan, A. M. Memon, H. Elagib, and H. H. Tienah. 2019. “Characterization of Natural Composites Fabricated from Abutilon-Fiber-Reinforced Poly (Lactic Acid).” Processes 7 (9): 583. https://doi.org/10.3390/pr7090583.
  • Wang, B., Z. Li, X. Qi, N. Chen, Q. Zeng, D. Dai, M. Fan, and J. Rao. 2019. “Thermal Insulation Properties of Green Vacuum Insulation Panel Using Wood Fiber As Core Material.” Bio Resources 14 (2): 3339–3351. https://doi.org/10.15376/biores.14.2.3339-3351.
  • Wi, S., J. H. Park, Y. U. Kim, S. Yang, and S. Kim. 2021. “Thermal, Hygric, and Environmental Performance Evaluation of Thermal Insulation Materials for Their Sustainable Utilization in Buildings.” Environmental Pollution 272:116033. https://doi.org/10.1016/j.envpol.2020.116033.
  • Ye, H., Y. Wang, Q. Yu, S. Ge, W. Fan, M. Zhang, Z. Huang, M. Manzo, L. Cai, and L. Wang. 2022. “Bio-Based Composites Fabricated from Wood Fibers Through Self-Bonding Technology.” Chemosphere 287:132436. https://doi.org/10.1016/j.chemosphere.2021.132436.
  • Yussuf, A. A., I. Massoumi, and A. Hassan. 2010. “Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties.” Journal of Polymers and the Environment 18 (3): 422–429. https://doi.org/10.1007/s10924-010-0185-0.
  • Zarna, C., G. Chinga-Carrasco, and A. T. Echtermeyer. 2023. “Bending Properties and Numerical Modelling of Cellular Panels Manufactured from Wood Fibre/PLA Biocomposite by 3D Printing.” Composites Part A, Applied Science and Manufacturing 165:107368. https://doi.org/10.1016/j.compositesa.2022.107368.
  • Zhang, Q., L. Shi, J. Nie, H. Wang, and D. Yang. 2012. “Study on Poly(Lactic Acid)/Natural Fibers Composites.” Journal of Applied Polymer Science 125 (S2): E526–E533. https://doi.org/10.1002/app.36852.
  • Zhao, R., H. Guo, X. Yi, W. Gao, H. Zhang, Y. Bai, and T. Wang. 2020. “Research on Thermal Insulation Properties of Plant Fiber Composite Building Material: A Review.” International Journal of Thermophysics 41 (6): 87. https://doi.org/10.1007/s10765-020-02665-0.
  • Zhao, J. R., R. Zheng, J. Tang, H. J. Sun, and J. Wang. 2022. “A Mini-Review on Building Insulation Materials from Perspective of Plastic Pollution: Current Issues and Natural Fibres As a Possible Solution.” Journal of Hazardous Materials 438:129449. https://doi.org/10.1016/j.jhazmat.2022.129449.
  • Zhou, X., F. Zheng, H. Li, and C. Lu. 2010. “An Environment-Friendly Thermal Insulation Material from Cotton Stalk Fibers.” Energy and Buildings 42 (7): 1070–1074. https://doi.org/10.1016/j.enbuild.2010.01.020.