128
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of Mechanical and Microstructural Properties of Waste Tire Improved Cemented Clay

ORCID Icon & ORCID Icon

References

  • Adaska, W. S., and D. R. Luhr. 2004. “Control of Reflective Cracking in Cement Stabilized Pavements.” In Proceedings of 5th international RILEM conference on cracking in pavements, Limoges, France, 309–24.
  • Afrakoti, M. T. P., A. J. Choobbasti, M. Ghadakpour, and S. S. Kutanaei. 2020. “Investigation of the Effect of the Coal Wastes on the Mechanical Properties of the Cement-Treated Sandy Soil.” Construction and Building Materials 239:117848. https://doi.org/10.1016/j.conbuildmat.2019.117848.
  • Akbarimehr, D., A. Eslami, and E. Aflaki. 2020. “Geotechnical Behaviour of Clay Soil Mixed with Rubber Waste.” Journal of Cleaner Production 271:122632. https://doi.org/10.1016/j.jclepro.2020.122632.
  • Al-Tabbaa, A., and T. Aravinthan. 1998. “Natural Clay-Shredded Tire Mixtures as Landfill Barrier Materials.” Waste Management 18 (1): 9–16. https://doi.org/10.1016/S0956-053X(98)00002-6.
  • ASTM C150/C150M-20. 2020. “Standard Specification for Portland Cement.” ASTM International.
  • ASTM C511-19. 2019. “Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes.” ASTM International.
  • ASTM C597-02. 2002. “Standard Test Method for Pulse Velocity Through Concrete.” ASTM International.
  • ASTM D1633-17. 2017. “Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders.” ASTM International.
  • ASTM D4318-17e1. 2017. “Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.” ASTM International.
  • ASTM D6913/D6913M-17. 2017. “Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis.” ASTM International.
  • ASTM D698-12e2. 2012. “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 Ft-Lbf/ft3 (600 kN-M/m3)).” ASTM International.
  • ASTM D854-14. 2014. “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer.” ASTM International.
  • Bak, H. M., T. Kariminia, B. Shahbodagh, M. A. Rowshanzamir, and A. Khoshghalb. 2021. “Application of Bio-Cementation to Enhance Shear Strength Parameters of Soil-Steel Interface.” Construction and Building Materials 294:123470. https://doi.org/10.1016/j.conbuildmat.2021.123470.
  • Baldovino, J. J. A., R. L. S. Izzo, J. L. Rose, and M. D. I. Domingos. 2021. “Strength, Durability, and Microstructure of Geopolymers Based on Recycled-Glass Powder Waste and Dolomitic Lime for Soil Stabilization.” Construction and Building Materials 271:121874. https://doi.org/10.1016/j.conbuildmat.2020.121874.
  • Bekhiti, M., H. Trouzine, and M. Rabehi. 2019. “Influence of Waste Tire Rubber Fibers on Swelling Behavior, Unconfined Compressive Strength and Ductility of Cement Stabilized Bentonite Clay Soil.” Construction and Building Materials 208:304–313. https://doi.org/10.1016/j.conbuildmat.2019.03.011.
  • Chan, C.-M. 2012. “Strength and Stiffness of a Cement-Stabilised Lateritic Soil with Granulated Rubber Addition.” Proceedings of the Institution of Civil Engineers-Ground Improvement 165 (1): 41–52. Thomas Telford Ltd. https://doi.org/10.1680/grim.2012.165.1.41.
  • Cho, Y.-H., K.-W. Lee and S.-W. Ryu. 2006. “Development of Cement-Treated Base Material for Reducing Shrinkage Cracks.” Transportation Research Record 1952 (1): 134–143. SAGE Publications Sage CA: Los Angeles, CA. https://doi.org/10.1177/0361198106195200115.
  • Consoli, N. C., P. M. V. Ferreira, C.-S. Tang, S. F. V. Marques, L. Festugato, and M. B. Corte. 2016. “A Unique Relationship Determining Strength of Silty/Clayey Soils–Portland Cement Mixes.” Soils & Foundations 56 (6): 1082–1088. https://doi.org/10.1016/j.sandf.2016.11.011.
  • Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key Parameters for Strength Control of Artificially Cemented Soils.” Journal of Geotechnical and Geoenvironmental Engineering 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
  • Consoli, N. C., S. F. V. Marques, M. F. Floss, and L. Festugato. 2017. “Broad-Spectrum Empirical Correlation Determining Tensile and Compressive Strength of Cement-Bonded Clean Granular Soils.” Journal of Materials in Civil Engineering 29 (6): 6017004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001858.
  • Cooper, M. R., and A. N. Rose. 1999. “Stone Column Support for an Embankment on Deep Alluvial Soils.” Proceedings of the Institution of Civil Engineers: Geotechnical Engineering 132 (1): 15–25. https://doi.org/10.1680/gt.1999.370103.
  • Diambra, A., E. Ibraim, A. Peccin, N. C. Consoli, and L. Festugato. 2017. “Theoretical Derivation of Artificially Cemented Granular Soil Strength.” Journal of Geotechnical and Geoenvironmental Engineering 143 (5): 4017003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001646.
  • Ekinci, A., and P. M. V. Ferreira. 2012. “The Undrained Mechanical Behaviour of a Fibre-Reinforced Heavily Over-Consolidated Clay.” ISSMGE TC211 and BBRI.
  • Ekinci, A., M. Hanafi, and E. Aydin. 2020. “Strength, Stiffness, and Microstructure of Wood-Ash Stabilized Marine Clay.” Minerals, Multidisciplinary Digital Publishing Institute 10 (9): 796. https://doi.org/10.3390/min10090796.
  • Ekinci, A., H. C. Scheuermann Filho, and N. C. Consoli. 2019. “Copper Slag-Hydrated Lime-Portland Cement Stabilized Marine Deposited Clay.” Proceedings of the Institution of Civil Engineers-Ground Improvement 1–30. https://www.icevirtuallibrary.com/doi/abs/10.1680/jgrim.18.00123.
  • European Commision. 2020. “The European Green Deal.” https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en.
  • Fakhrabadi, A., M. Ghadakpour, A. J. Choobbasti, and S. S. Kutanaei. 2021. “Influence of the Non-Woven Geotextile (NWG) on the Engineering Properties of Clayey-Sand Treated with Copper Slag-Based Geopolymer.” Construction and Building Materials 306:124830. https://doi.org/10.1016/j.conbuildmat.2021.124830.
  • Festugato, L., A. P. da Silva, A. Diambra, N. C. Consoli, and E. Ibraim. 2018. “Modelling Tensile/Compressive Strength Ratio of Fibre Reinforced Cemented Soils.” Geotextiles and Geomembranes 46 (2): 155–165. https://doi.org/10.1016/j.geotexmem.2017.11.003.
  • FHWA (Federal Highway Administration). 2014. Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects FP-14. U.S. Department of Transportation.
  • Freilich, B. J., C. Li, and J. G. Zornberg. 2010. “Effective Shear Strength of Fiber-Reinforced Clays.” 9th International Conference on Geosynthetics, 1997–2000. Brazil: Citeseer.
  • He, J., D. Guo, D. Song, F. Liu, L. Zhang, and Q. Wen. 2023. “Experimental Study on Unconfined Compressive Strength of Rubberized Cemented Soil.” KSCE Journal of Civil Engineering 27 (10): 4130–4140. https://doi.org/10.1007/s12205-023-1485-y.
  • Janalizadeh Choobbasti, A., F. Farrokhzad, A. Nadimi, and S. Soleimani Kutanaei. 2019. “Effects of Copper Sludge on Cemented Clay Using Ultrasonic Pulse Velocity.” Journal of Adhesion Science and Technology 33 (4): 433–444. https://doi.org/10.1080/01694243.2018.1471842.
  • Kim, Y. T., and H. S. Kang. 2011. “Engineering Characteristics of Rubber-Added Lightweight Soil as a Flowable Backfill Material.” Journal of Materials in Civil Engineering 23 (9): 1289–1294. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000307.
  • Kutanaei, S. S., M. T. P. Afrakoti, and A. J. Choobbasti. 2021. “Effect of Coal Waste on Grain Failure of Cement-Stabilized Sand Due to Compaction.” Arabian Journal of Geosciences 14 (12): 1105. https://doi.org/10.1007/s12517-021-07392-w.
  • Ladd, R. S. 1978. “Preparing Test Specimens Using Undercompaction.” Geotechnical Testing Journal 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
  • Li, C., and J. G. Zornberg. 2003. “Validation of Discrete Framework for Fiber-Reinforcement.” In Proceedings of North American Conference on Geosynthetics, Albany, NY: North American, Citeseer.
  • Li, C., and J. G. Zornberg. 2005. “Interface Shear Strength in Fiber-Reinforced Soil.” In Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 1373. Citeseer.
  • Mirzababaei, M., M. Miraftab, M. Mohamed, and P. McMahon. 2013. “Unconfined Compression Strength of Reinforced Clays with Carpet Waste Fibers.” Journal of Geotechnical and Geoenvironmental Engineering 139 (3): 483–493. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000792.
  • Mirzababaei, M., M. Mohamed, A. Arulrajah, S. Horpibulsuk and V. Anggraini. 2018. “Practical Approach to Predict the Shear Strength of Fibre-Reinforced Clay.” Geosynthetics International 25 (1): 50–66. Thomas Telford Ltd. https://doi.org/10.1680/jgein.17.00033.
  • Młynarek, Z., K. Stefaniak, and J. Wierzbicki. 2012. “Geotechnical Parameters of Alluvial Soils from in-Situ Tests.” Archives of Hydroengineering and Environmental Mechanics 59 (1–2): 63–81. https://doi.org/10.2478/v10203-012-0005-1.
  • New Mexico. 2009. New Mexico Earthen Building Materials Code, CID-GCB-NM Ed. Santa Fe.
  • Özkul, Z. H., and G. Baykal. 2007. “Shear Behavior of Compacted Rubber Fiber-Clay Composite in Drained and Undrained Loading.” Journal of Geotechnical and Geoenvironmental Engineering 133 (7): 767–781. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(767).
  • PCA (Portland Cement Association). 1992. Soil Cement Laboratory Handbook, Engineering Bulletin. Skokie, IL: Portland Cement Association.
  • Scullion, T. 2002. “Precracking of Soil-Cement Bases to Reduce Reflection Cracking: Field Investigation.” Transportation Research Record 1787 (1): 22–30. SAGE Publications Sage CA: Los Angeles, CA. https://doi.org/10.3141/1787-03.
  • Tang, C., B. Shi, W. Gao, F. Chen, and Y. Cai. 2007. “Strength and Mechanical Behavior of Short Polypropylene Fiber Reinforced and Cement Stabilized Clayey Soil.” Geotextiles and Geomembranes 25 (3): 194–202. https://doi.org/10.1016/j.geotexmem.2006.11.002.
  • USACE. 1994. “Soil Stabilization for Pavements.” USACE Technical Manual No. TM5-822-14.
  • Valente, M., M. Sambucci, A. Sibai, and A. Iannone. 2022. “Novel Cement-Based Sandwich Composites Engineered with Ground Waste Tire Rubber: Design, Production, and Preliminary Results.” Materials Today Sustainability 20:100247. https://doi.org/10.1016/j.mtsust.2022.100247.
  • Yadav, J. S., and S. K. Tiwari. 2017a. “Effect of Waste Rubber Fibres on the Geotechnical Properties of Clay Stabilized with Cement.” Applied Clay Science 149 (July): 97–110. https://doi.org/10.1016/j.clay.2017.07.037.
  • Yadav, J. S. and S. K. Tiwari. 2017b. “A Study on the Potential Utilization of Crumb Rubber in Cement Treated Soft Clay.” Journal of Building Engineering 9 (November 2016): 177–191. Elsevier Ltd. https://doi.org/10.1016/j.jobe.2017.01.001.
  • Zare, P., S. S. Narani, M. Abbaspour, A. Fahimifar, S. M. M. M. Hosseini, and P. Zare. 2020. “Experimental Investigation of Non-Stabilized and Cement-Stabilized Rammed Earth Reinforcement by Waste Tire Textile Fibers (WTTFs).” Construction and Building Materials 260:120432. https://doi.org/10.1016/j.conbuildmat.2020.120432.