1,981
Views
0
CrossRef citations to date
0
Altmetric
Review

The nexus of long noncoding RNAs, splicing factors, alternative splicing and their modulations

ORCID Icon, , , &
Pages 1-20 | Accepted 14 Nov 2023, Published online: 28 Nov 2023

References

  • Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–108. doi: 10.1038/nature11233
  • Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26. doi: 10.1016/j.cell.2013.06.020
  • Yang L, Lin C, Jin C, et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 2013;500(7464):598–602. doi: 10.1038/nature12451
  • Gutschner T, Hämmerle M, Diederichs S. MALAT1 — a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl). 2013;91(7):791–801. doi: 10.1007/s00109-013-1028-y
  • Malakar P, Chartarifsky L, Hija A, et al. Insulin receptor alternative splicing is regulated by insulin signaling and modulates beta cell survival. Sci Rep. 2016;6(1):6. doi: 10.1038/srep31222
  • Karni R, Hippo Y, Lowe SW, et al. The splicing-factor oncoprotein SF2/ASF activates mTORC1. Proc Natl Acad Sci U S A. 2008;105(40):15323–15327. doi: 10.1073/pnas.0801376105
  • Jbara A, Lin KT, Stossel C, et al. RBFOX2 modulates a metastatic signature of alternative splicing in pancreatic cancer. Nature. 2023;617(7959):147–153. doi: 10.1038/s41586-023-05820-3
  • Ben-Hur V, Denichenko P, Siegfried Z, et al. S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1. Cell Rep. 2013;3(1):103–115. doi: 10.1016/j.celrep.2012.11.020
  • Sever R, Brugge JS. Signal Transduction in cancer. Cold Spring Harb Perspect Med. 2015;5(4):a006098–a006098. doi: 10.1101/cshperspect.a006098
  • Venables JP. Aberrant and alternative splicing in cancer. Cancer Res. 2004;64(21):7647–7654. doi: 10.1158/0008-5472.CAN-04-1910
  • David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 2010;24(21):2343. doi: 10.1101/gad.1973010
  • Srebrow A, Kornblihtt AR. The connection between splicing and cancer. J Cell Sci. 2006;119(13):2635–2641. doi: 10.1242/jcs.03053
  • Kim E, Goren A, Ast G. Insights into the connection between cancer and alternative splicing. Trends Genet. 2008;24(1):7–10. doi: 10.1016/j.tig.2007.10.001
  • Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72(1):291–336. doi: 10.1146/annurev.biochem.72.121801.161720
  • Gonçalves V, Pereira JFS, Jordan P. Signaling pathways driving aberrant splicing in cancer cells. Genes (Basel). 2018;9(1):9. doi: 10.3390/genes9010009
  • Shilo A, Siegfried Z, Karni R. The role of splicing factors in deregulation of alternative splicing during oncogenesis and tumor progression. Mol Cell Oncol. 2014;2(1):e970955. doi: 10.4161/23723548.2014.970955
  • Busch A, Hertel KJ. Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdiscip Rev RNA. 2012;3(1):1–12. doi: 10.1002/wrna.100
  • Chen M, Manley JL. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol. 2009;10(11):741. doi: 10.1038/nrm2777
  • Karni R, De Stanchina E, Lowe SW, et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol. 2007;14(3):185–193. doi: 10.1038/nsmb1209
  • Dreyfuss G, Matunis MJ, Piñol-Roma S, et al. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem. 1993;62(1):289–321. doi: 10.1146/annurev.bi.62.070193.001445
  • Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002;3(3):195–205. doi: 10.1038/nrm760
  • Krecic AM, Swanson MS. hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol. 1999;11(3):363–371. doi: 10.1016/S0955-0674(99)80051-9
  • Carpenter B, MacKay C, Alnabulsi A, et al. The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression. Biochim Biophys Acta. 2006;1765(2):85–100. doi: 10.1016/j.bbcan.2005.10.002
  • Golan-Gerstl R, Cohen M, Shilo A, et al. Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res. 2011;71(13):4464–4472. doi: 10.1158/0008-5472.CAN-10-4410
  • Tauler J, Zudaire E, Liu H, et al. hnRNP A2/B1 modulates epithelial-mesenchymal transition in lung cancer cell lines. Cancer Res. 2010;70(18):7137–7147. doi: 10.1158/0008-5472.CAN-10-0860
  • Tang J, Chen Z, Wang Q, et al. Promotes colon cancer progression via the MAPK pathway. Front Genet. 2021;12:843. doi: 10.3389/fgene.2021.666451. hnRNPA2B1.
  • Romero-Barrios N, Legascue MF, Benhamed M, et al. Splicing regulation by long noncoding RNAs. Nucleic Acids Res. 2018;46(5):2169. doi: 10.1093/nar/gky095
  • Ji Q, Zhang L, Liu X, et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br J Cancer. 2014;111(4):736–748. doi: 10.1038/bjc.2014.383
  • Li L, Feng T, Lian Y, et al. Role of human noncoding RNAs in the control of tumorigenesis. Proc Natl Acad Sci U S A. 2009;106(31):12956–12961. doi: 10.1073/pnas.0906005106
  • Wang G, Cui Y, Zhang G, et al. Regulation of proto-oncogene transcription, cell proliferation, and tumorigenesis in mice by PSF protein and a VL30 noncoding RNA. Proc Natl Acad Sci U S A. 2009;106(39):16794–16798. doi: 10.1073/pnas.0909022106
  • Romero-Barrios N, Legascue MF, Benhamed M, et al. Splicing regulation by long noncoding RNAs. Nucleic Acids Res. 2018;46(5):2169–2184. doi: 10.1093/nar/gky095
  • West JA, Davis CP, Sunwoo H, et al. The Long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell. 2014;55(5):791–802. doi: 10.1016/j.molcel.2014.07.012
  • Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2020;22(2):96–118. doi: 10.1038/s41580-020-00315-9
  • Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–1415. doi: 10.1038/ng.259
  • WANG Y, LIU J, HUANG B, et al. Mechanism of alternative splicing and its regulation. Biomed Rep. 2015;3(2):152. doi: 10.3892/br.2014.407
  • Fu XD, Ares M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet. 2014;15(10):689. doi: 10.1038/nrg3778
  • Bonnal SC, López-Oreja I, Valcárcel J. Roles and mechanisms of alternative splicing in cancer — implications for care. Nat Rev Clin Oncol. 2020;17(8):457–474. doi: 10.1038/s41571-020-0350-x
  • Suzuki H, Kumar SA, Shuai S, et al. Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature. 2019;574(7780):707–711. doi: 10.1038/s41586-019-1650-0
  • Obeng EA, Chappell RJ, Seiler M, et al. Physiologic expression of Sf3b1K700E causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell. 2016;30(3):404–417. doi: 10.1016/j.ccell.2016.08.006
  • Shirai CL, Ley JN, White BS, et al. Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell. 2015;27(5):631–643. doi: 10.1016/j.ccell.2015.04.008
  • Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–69. doi: 10.1038/nature10496
  • Darman RB, Seiler M, Agrawal AA, et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 2015;13(5):1033–1045. doi: 10.1016/j.celrep.2015.09.053
  • DeBoever C, Ghia EM, Shepard PJ, et al. Transcriptome sequencing reveals potential mechanism of cryptic 3’ splice site selection in SF3B1-mutated cancers. PLoS Comput Biol. 2015;11(3):e1004105. doi: 10.1371/journal.pcbi.1004105
  • Shiozawa Y, Malcovati L, Gallì A, et al. Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nat Commun. 2018;9(1):1–16. doi: 10.1038/s41467-018-06063-x
  • Zhang Y, Qian J, Gu C, et al. Alternative splicing and cancer: a systematic review. Signal Transduction and Targeted Therapy 2021; 6:1–14.
  • Elliott K, Sakamuro D, Basu A, et al. Bin1 functionally interacts with Myc and inhibits cell proliferation via multiple mechanisms. Oncogene. 1999;18(24):3564–3573. doi: 10.1038/sj.onc.1202670
  • Ge K, Duhadaway J, Du W, et al. Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proc Natl Acad Sci U S A. 1999;96(17):9689–9694. doi: 10.1073/pnas.96.17.9689
  • Shimoni-Sebag A, Lebenthal-Loinger I, Zender L, et al. RRM1 domain of the splicing oncoprotein SRSF1 is required for MEK1-MAPK-ERK activation and cellular transformation. Carcinogenesis. 2013;34(11):2498–2504. doi: 10.1093/carcin/bgt247
  • Das S, Anczuków O, Akerman M, et al. Oncogenic Splicing Factor SRSF1 Is a Critical Transcriptional Target of MYC. Cell Rep. 2012;1(2):110–117. doi: 10.1016/j.celrep.2011.12.001
  • Choi S, Lee HS, Cho N, et al. RBFOX2-regulated TEAD1 alternative splicing plays a pivotal role in hippo-YAP signaling. Nucleic Acids Res. 2022;50(15):8658–8673. doi: 10.1093/nar/gkac509
  • Étienne HM, Vogel G, Zabarauskas A, et al. The Sam68 STAR RNA-Binding Protein Regulates mTOR Alternative Splicing during Adipogenesis. Mol Cell. 2012;46(2):187–199. doi: 10.1016/j.molcel.2012.02.007
  • Marani M, Tenev T, Hancock D, et al. Identification of novel isoforms of the BH3 domain protein bim which directly activate bax to trigger apoptosis. Mol Cell Biol. 2002;22(11):3577. doi: 10.1128/MCB.22.11.3577-3589.2002
  • Urbanski LM, Leclair N, Anczuków O. Alternative-splicing defects in cancer: splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. Wiley Interdiscip Rev RNA. 2018;9(4). doi: 10.1002/wrna.1476
  • Escobar-Hoyos L, Knorr K, Abdel-Wahab O. Aberrant RNA splicing in cancer. Annu Rev Cancer Biol. 2019;3(1):167–185. doi: 10.1146/annurev-cancerbio-030617-050407
  • Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–69. doi: 10.1038/nature10496
  • Papaemmanuil E, Gerstung M, Malcovati L, et al. Consortium on behalf of the CMD working group of the ICG, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27; quiz 3699. doi: 10.1182/blood-2013-08-518886
  • Graubert TA, Shen D, Ding L, et al. RECURRENT MUTATIONS IN THE U2AF1 SPLICING FACTOR IN MYELODYSPLASTIC SYNDROMES. Nat Genet. 2012;44(1):53. doi: 10.1038/ng.1031
  • Madan V, Kanojia D, Li J, et al. Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Commun. 2015;6(1):1–14. doi: 10.1038/ncomms7042
  • Kim E, Ilagan JO, Liang Y, et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell. 2015;27(5):617–630. doi: 10.1016/j.ccell.2015.04.006
  • Lasho TL, Finke CM, Hanson CA, et al. SF3B1 mutations in primary myelofibrosis: clinical, histopathology and genetic correlates among 155 patients. Leukemia. 2012;26(5):1135–1137. doi: 10.1038/leu.2011.320
  • Quesada V, Conde L, Villamor N, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nature Genet. 2012;44(1):47–52. doi: 10.1038/ng.1032
  • Wang L, Lawrence MS, Wan Y, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365(26):2497–2506. doi: 10.1056/NEJMoa1109016
  • Alsafadi S, Houy A, Battistella A, et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun. 2016;7(1):1–12. doi: 10.1038/ncomms10615
  • Saez B, Walter MJ, Graubert TA. Splicing factor gene mutations in hematologic malignancies. Blood. 2017;129(10):1260. doi: 10.1182/blood-2016-10-692400
  • Cohen-Eliav M, Golan-Gerstl R, Siegfried Z, et al. The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers. J Pathol. 2013;229(4):630–639. doi: 10.1002/path.4129
  • Gonçalves V, Jordan P. Posttranscriptional regulation of splicing factor SRSF1 and its role in cancer cell Biology. Biomed Res Int. 2015;2015:1–10. doi: 10.1155/2015/287048
  • David CJ, Chen M, Assanah M, et al. HnRNP proteins controlled by c-myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 2010;463(7279):364–368. doi: 10.1038/nature08697
  • Bradley T, Cook ME, Blanchette M. SR proteins control a complex network of RNA-processing events. RNA. 2015;21(1):75–92. doi: 10.1261/rna.043893.113
  • Martinez-Contreras R, Cloutier P, Shkreta L, et al. hnRNP proteins and splicing control. Adv Exp Med Biol. 2007;623:123–147.
  • Graveley BR, Maniatis T. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol Cell. 1998;1(5):765–771. doi: 10.1016/S1097-2765(00)80076-3
  • Anczuków O, Akerman M, Cléry A, et al. SRSF1-regulated alternative splicing in breast cancer. Mol Cell. 2015;60(1):105. doi: 10.1016/j.molcel.2015.09.005
  • Jiang L, Huang J, Higgs BW, et al. Genomic landscape survey identifies SRSF1 as a key oncodriver in small cell lung cancer. PLoS Genet. 2016;12(4):12. doi: 10.1371/journal.pgen.1005895
  • Wan L, Yu W, Shen E, et al. SRSF6-regulated alternative splicing that promotes tumour progression offers a therapy target for colorectal cancer. Gut. 2019;68(1):118–129. doi: 10.1136/gutjnl-2017-314983
  • Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;17:1–17.
  • Wu H, Yin QF, Luo Z, et al. Unusual processing generates SPA LncRNAs that sequester multiple RNA binding proteins. Mol Cell. 2016;64(3):534–548. doi: 10.1016/j.molcel.2016.10.007
  • Wilusz JE, Freier SM, Spector DL. 3′ end processing of a Long nuclear-Retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell. 2008;135(5):919–932. doi: 10.1016/j.cell.2008.10.012
  • Cheetham SW, Faulkner GJ, Dinger ME. Overcoming challenges and dogmas to understand the functions of pseudogenes. Nat Rev Genet. 2019;21(3):191–201. doi: 10.1038/s41576-019-0196-1
  • Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. EMBO J. 2019;38(16):e100836. cited 2023. doi: 10.15252/embj.2018100836
  • Mercer TR, Wilhelm D, Dinger ME, et al. Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res. 2011;39(6):2393–2403. doi: 10.1093/nar/gkq1158
  • Seal RL, Chen L-L, Griffiths-Jones S, et al. A guide to naming human non-coding RNA genes. EMBO J. 2020;39(6):e103777. doi: 10.15252/embj.2019103777
  • Uszczynska-Ratajczak B, Lagarde J, Frankish A, et al. Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet. 2018;19(9):535–548. doi: 10.1038/s41576-018-0017-y
  • Mattick JS, Rinn JL. Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol. 2015;22(1):5–7. doi: 10.1038/nsmb.2942
  • Frankish A, Diekhans M, Jungreis I, et al. GENCODE 2021. Nucleic Acids Res. 2021;49(D1):D916–23. doi: 10.1093/nar/gkaa1087
  • Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;17:1–17.
  • Wu P, Mo Y, Peng M, et al. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 2020;19(1):1–14. doi: 10.1186/s12943-020-1147-3
  • Williamson L, Saponaro M, Boeing S, et al. UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. Cell. 2017;168(5):843–855.e13. doi: 10.1016/j.cell.2017.01.019
  • Hube F, Guo J, Chooniedass-Kothari S, et al. Alternative splicing of the first intron of the steroid receptor RNA activator SRA. Participates In The Generation Of Coding And Noncoding RNA Isoforms In Breast Cancer Cell Lines. 2006;25(7):418–428. doi: 10.1089/dna.2006.25.418
  • Gonzàlez-Porta M, Frankish A, Rung J, et al. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 2013;14(7):1–11. doi: 10.1186/gb-2013-14-7-r70
  • Kung JTY, Colognori D, Lee JT. Long Noncoding RNAs: Past, Present, and Future. Genetics. 2013;193(3):651. doi: 10.1534/genetics.112.146704
  • Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2020;22(2):96–118. doi: 10.1038/s41580-020-00315-9
  • Malakar P, Shilo A, Mogilevsky A, et al. Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation. Cancer Res. 2017;77(5):1155–1167. doi: 10.1158/0008-5472.CAN-16-1508
  • Huang GW, Zhang YL, Di LL, et al. Natural antisense transcript TPM1-AS regulates the alternative splicing of tropomyosin I through an interaction with RNA-binding motif protein 4. Int J Biochem Cell Biol. 2017;90:59–67. doi: 10.1016/j.biocel.2017.07.017
  • Duan Y, Jia Y, Wang J, et al. Long noncoding RNA DGCR5 involves in tumorigenesis of esophageal squamous cell carcinoma via SRSF1-mediated alternative splicing of Mcl-1. Cell Death Dis. 2021;12:587. doi: 10.1038/s41419-021-03858-7
  • Tripathi V, Ellis JD, Shen Z, et al. The nuclear-Retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925. doi: 10.1016/j.molcel.2010.08.011
  • Pruszko M, Milano E, Forcato M, et al. The mutant p53‐ID4 complex controls VEGFA isoforms by recruiting lncRNA MALAT1. EMBO Rep. 2017;18(8):1331. doi: 10.15252/embr.201643370
  • Ji Q, Zhang L, Liu X, et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br J Cancer. 2014;111(4):736–748. doi: 10.1038/bjc.2014.383
  • Wu H, Zheng J, Deng J, et al. LincRNA-uc002yug.2 involves in alternative splicing of RUNX1 and serves as a predictor for esophageal cancer and prognosis. Oncogene. 2015;34(36):4723–4734. doi: 10.1038/onc.2014.400
  • Meng LD, Shi GD, Ge WL, et al. Linc01232 promotes the metastasis of pancreatic cancer by suppressing the ubiquitin-mediated degradation of HNRNPA2B1 and activating the A-Raf-induced MAPK/ERK signaling pathway. Cancer Lett. 2020;494:107–120. doi: 10.1016/j.canlet.2020.08.001
  • Tripathi V, Song DY, Zong X, et al. SRSF1 regulates the assembly of pre-mRNA processing factors in nuclear speckles. Mol Biol Cell. 2012;23(18):3694–3706. doi: 10.1091/mbc.e12-03-0206
  • Liu Y, Zhang YM, Ma FB, et al. Long noncoding RNA HOXA11-AS promotes gastric cancer cell proliferation and invasion via SRSF1 and functions as a biomarker in gastric cancer. World J Gastroenterol. 2019;25(22):2763. doi: 10.3748/wjg.v25.i22.2763
  • Xu L, Wang Z, Yin C, et al. Long noncoding RNA LINC02580 suppresses the invasion–metastasis cascade in hepatocellular carcinoma by targeting SRSF1. Biochem Biophys Res Commun. 2020;533(4):685–691. doi: 10.1016/j.bbrc.2020.10.061
  • Dong M, Dong Z, Zhu X, et al. Long non-coding RNA MIR205HG regulates KRT17 and tumor processes in cervical cancer via interaction with SRSF1. Exp Mol Pathol 2019; 111.
  • Li H, Guo S, Zhang M, et al. Long non-coding RNA AGAP2-AS1 accelerates cell proliferation, migration, invasion and the EMT process in colorectal cancer via regulating the miR-4,668-3p/SRSF1 axis. J Gene Med 2020; 22.
  • Zhou X, Li X, Yu L, et al. The RNA-binding protein SRSF1 is a key cell cycle regulator via stabilizing NEAT1 in glioma. Int J Biochem Cell Biol. 2019;113:75–86. doi: 10.1016/j.biocel.2019.06.003
  • Wu Z-H, Liu C-C, Zhou Y-Q, et al. OnclncRNA-626 promotes malignancy of gastric cancer via inactivated the p53 pathway through interacting with SRSF1. Am J Cancer Res. 2019;9:2249.
  • SUN Q, HAO Q, LIN YC, et al. Antagonism between splicing and microprocessor complex dictates the serum-induced processing of lnc-MIRHG for efficient cell cycle reentry. RNA. 2020;26(11):1603–1620. doi: 10.1261/rna.075309.120
  • Wu J, Wang N, Yang Y, et al. Correction: LINC01152 upregulates MAML2 expression to modulate the progression of glioblastoma multiforme via notch signaling pathway. Cell Death Dis. 2021;12(10):12. doi: 10.1038/s41419-021-04106-8
  • Spiniello M, Knoener RA, Steinbrink MI, et al. HyPR-MS for multiplexed Discovery of MALAT1, NEAT1, and NORAD lncRNA protein interactomes. J Proteome Res. 2018;17(9):3022–3038. doi: 10.1021/acs.jproteome.8b00189
  • West JA, Davis CP, Sunwoo H, et al. The Long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell. 2014;55(5):791–802. doi: 10.1016/j.molcel.2014.07.012
  • Mao Q, Li L, Zhang C, et al. Long non coding RNA NRON inhibited breast cancer development through regulating miR-302b/SRSF2 axis. Am J Transl Res. 2020;12:4683–4692.
  • Chen Y, Shen T, Ding X, et al. lncRNA MRUL suppressed non-small cell lung cancer cells proliferation and invasion by targeting miR-17-5p/SRSF2 axis. Biomed Res Int;2020. doi: 10.1155/2020/9567846
  • Yu B, Qu L, Wu T, et al. A novel LncRNA, AC091729.7 promotes sinonasal squamous cell carcinomas proliferation and invasion through binding SRSF2. Front Oncol. 2020;9: doi: 10.3389/fonc.2019.01575
  • El Bassit G, Patel RS, Carter G, et al. MALAT1 in human adipose stem cells modulates survival and alternative splicing of PKCδII in HT22 cells. Endocrinology. 2017;158:183–195. doi: 10.1210/en.2016-1819
  • Wang H, Liu M, Fang L, et al. The cisplatin-induced lncRNA PANDAR dictates the chemoresistance of ovarian cancer via regulating SFRS2-mediated p53 phosphorylation. Cell Death Dis. 2018;9(11). doi: 10.1038/s41419-018-1148-y
  • Gao H, Sun Y, Chen J, et al. Long non-coding RNA AFAP1-AS1 promotes cell growth and inhibits apoptosis by binding to specific proteins in germinal center B-cell-like diffuse large B-cell lymphoma. Am J Transl Res. 2020;12:8225–8246.
  • Wang Y, Zhang W, Liu W, et al. Long noncoding RNA VESTAR regulates lymphangiogenesis and Lymph Node metastasis of esophageal squamous cell carcinoma by enhancing VEGFC mRNA stability. Cancer Res. 2021;81(12):3187–3199. doi: 10.1158/0008-5472.CAN-20-1713
  • Kong J, Sun W, Li C, et al. Long non-coding RNA LINC01133 inhibits epithelial–mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6. Cancer Lett. 2016;380(2):476–484. doi: 10.1016/j.canlet.2016.07.015
  • Zhang F, Wang H, Yu J, et al. LncRNA CRNDE attenuates chemoresistance in gastric cancer via SRSF6-regulated alternative splicing of PICALM. Mol Cancer. 2021;20(1):20. doi: 10.1186/s12943-020-01299-y
  • Si Z, Yu L, Jing H, et al. Oncogenic lncRNA ZNF561-AS1 is essential for colorectal cancer proliferation and survival through regulation of miR-26a-3p/miR-128-5p-SRSF6 axis. J Exp Clin Cancer Res. 2021;40(1):40. doi: 10.1186/s13046-021-01882-1
  • Song J, Su ZZ, Shen QM. Long non-coding RNA MALAT1 regulates proliferation, apoptosis, migration and invasion via miR-374b-5p/SRSF7 axis in non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2020;24(4):1853–1862. doi: 10.26355/eurrev_202002_20363
  • He R, Wu S, Gao R, et al. Identification of a Long noncoding RNA TRAF3IP2-AS1 as key regulator of IL-17 signaling through the SRSF10–IRF1–Act1 axis in autoimmune diseases. J Immunol. 2021;206(10):2353–2365. doi: 10.4049/jimmunol.2001223
  • Zhou B, Wang Y, Jiang J, et al. The long noncoding RNA colon cancer-associated transcript-1/miR-490 axis regulates gastric cancer cell migration by targeting hnRNPA1. IUBMB Life. 2016;68(3):201–210. doi: 10.1002/iub.1474
  • Lan Z, Yao X, Sun K, et al. The interaction between lncRNA SNHG6 and hnRNPA1 contributes to the growth of colorectal cancer by enhancing aEROBIC GLYCOLYsis through the regulation of alternative splicing of PKM. Front Oncol. 2020;10:10. doi: 10.3389/fonc.2020.00363
  • Zhang Y, Huang W, Yuan Y, et al. Long non-coding RNA H19 promotes colorectal cancer metastasis via binding to hnRNPA2B1. J Exp Clin Cancer Res. 2020;39(1):39. doi: 10.1186/s13046-020-01619-6
  • Yu PF, Kang AR, Jing LJ, et al. Long non-coding RNA CACNA1G-AS1 promotes cell migration, invasion and epithelial-mesenchymal transition by HNRNPA2B1 in non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2018;22(4):993–1002. doi: 10.26355/eurrev_201802_14381
  • Wang H, Liang L, Dong Q, et al. Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF-κB pathway in hepatocellular carcinoma. Theranostics. 2018;8(10):2814–2829. doi: 10.7150/thno.23012
  • Chen T, Gu C, Xue C, et al. LncRNA-uc002mbe.2 interacting with hnRNPA2B1 mediates AKT deactivation and p21 up-regulation induced by Trichostatin in liver cancer cells. Front Pharmacol. 2017;8: doi: 10.3389/fphar.2017.00669
  • Singh R, Gupta SC, Peng WX, et al. Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis. 2016;7(6):e2262. doi: 10.1038/cddis.2016.168
  • Zhang Y, Chen W, Pan T, et al. LBX2-AS1 is activated by ZEB1 and promotes the development of esophageal squamous cell carcinoma by interacting with HNRNPC to enhance the stability of ZEB1 and ZEB2 mRNAs. Biochem Biophys Res Commun. 2019;511(3):566–572. doi: 10.1016/j.bbrc.2019.02.079
  • McHugh CA, Chen CK, Chow A, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 2015;521(7551):232–236. doi: 10.1038/nature14443
  • Xiang Z, Lv Q, Zhang Y, et al. Long non-coding RNA DDX11-AS1 promotes the proliferation and migration of glioma cells by combining with HNRNPC. Mol Ther Nucleic Acids. 2022;28:601–612. doi: 10.1016/j.omtn.2022.04.016
  • Li J, He M, Xu W, et al. RETRACTED ARTICLE: knockdown of FOXO3a induces epithelial-mesenchymal transition and promotes metastasis of pancreatic ductal adenocarcinoma by activation of the β-catenin/TCF4 pathway through SPRY2. J Exp Clin Cancer Res. 2019;38(1):38. doi: 10.1186/s13046-019-1046-x
  • Zheng F, Chen J, Zhang X, et al. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis. Nat Commun. 2021;12(1):12. doi: 10.1038/s41467-021-21535-3
  • Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 2017;45(10):6051–6063. doi: 10.1093/nar/gkx141
  • Li M, Li L, Zhang X, et al. LncRNA RP11-670E13.6, interacted with hnRNPH, delays cellular senescence by sponging microRNA-663a in UVB damaged dermal fibroblasts. Aging. 2019;11(16):5992. doi: 10.18632/aging.102159
  • Li D, Wang X, Mei H, et al. Long noncoding RNA pancEts-1 promotes neuroblastoma progression through hnRNPK-Mediated β-catenin stabilization. Cancer Res. 2018;78(5):1169–1183. doi: 10.1158/0008-5472.CAN-17-2295
  • Toki N, Takahashi H, Sharma H, et al. SINEUP long non-coding RNA acts via PTBP1 and HNRNPK to promote translational initiation assemblies. Nucleic Acids Res. 2020;48(20):11626–11644. doi: 10.1093/nar/gkaa814
  • Zhang Z, Zhou C, Chang Y, et al. Long non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/β-catenin pathway to promote growth and metastasis in colorectal cancer. Cancer Lett. 2016;376(1):62–73. doi: 10.1016/j.canlet.2016.03.022
  • Van Alphen RJ, Wiemer EAC, Burger H, et al. The spliceosome as target for anticancer treatment. Br J Cancer. 2009;100:2. doi: 10.1038/sj.bjc.6604801. 2008; 100:228–232.
  • Lee CC, Chang WH, Chang YS, et al. Alternative splicing in human cancer cells is modulated by the amiloride derivative 3,5‐diamino‐6‐chloro‐N‐(N‐(2,6‐dichlorobenzoyl)carbamimidoyl)pyrazine‐2‐carboxide. Mol Oncol. 2019;13(8):1744. doi: 10.1002/1878-0261.12524
  • Chang JG, Yang DM, Chang WH, et al. Small Molecule Amiloride Modulates Oncogenic RNA Alternative Splicing to Devitalize Human Cancer Cells. PLoS One. 2011;6(6):e18643. doi: 10.1371/journal.pone.0018643
  • Kaida D, Motoyoshi H, Tashiro E, et al. Spliceostatin a targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol. 2007;3(9):576–583. 3. doi: 10.1038/nchembio.2007.18
  • Nakajima H, Hori Y, Terano H, et al. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J Antibiot (Tokyo). 1996;49(12):1204–1211. doi: 10.7164/antibiotics.49.1204
  • Convertini P, Shen M, Potter PM, et al. Sudemycin E influences alternative splicing and changes chromatin modifications. Nucleic Acids Res. 2014;42(8):4947. doi: 10.1093/nar/gku151
  • Lee SCW, Abdel-Wahab O. Therapeutic targeting of splicing in cancer. Nat Med. [cited 2023 Feb 17] 2016;22:976. Available from:/pmc/articles/PMC5644489/ doi:10.1038/nm.4165.
  • Xiao SH, Manley JL. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 1997;11(3):334–344. doi: 10.1101/gad.11.3.334
  • Cao W, Jamison SF, Garcia-Blanco MA. Both phosphorylation and dephosphorylation of ASF/SF2 are required for pre-mRNA splicing in vitro. RNA. 1997;3(12):1456.
  • Gui JF, Tronchere H, Chandler SD, et al. Purification and characterization of a kinase specific for the serine- and arginine-rich pre-mRNA splicing factors. Proc Natl Acad Sci U S A. 1994;91(23):10824–10828. doi: 10.1073/pnas.91.23.10824
  • Kuroyanagi N, Onogi H, Wakabayashi T, et al. Novel SR-protein-specific kinase, SRPK2, disassembles nuclear speckles. Biochem Biophys Res Commun. 1998;242(2):357–364. doi: 10.1006/bbrc.1997.7913
  • Rossi F, Labourier E, Forné T, et al. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature. 1996;381(6577):80–82. 1996 381:6577. doi: 10.1038/381080a0
  • Colwill K, Pawson T, Andrews B, et al. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 1996;15(2):265. doi: 10.1002/j.1460-2075.1996.tb00357.x
  • Naro C, Sette C. Phosphorylation-mediated regulation of alternative splicing in cancer. Int J Cell Biol. 2013;2013:1–15. doi: 10.1155/2013/151839
  • Pilch B, Allemand E, Facompré M, et al. Specific inhibition of serine- and arginine-rich splicing factors phosphorylation, spliceosome assembly, and splicing by the antitumor drug NB-506. Cancer Res. 2001;61(18):6876–6884.
  • Soret J, Bakkour N, Maire S, et al. Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. Proc Natl Acad Sci U S A. 2005;102(24):8764–8769. doi: 10.1073/pnas.0409829102
  • Muraki M, Ohkawara B, Hosoya T, et al. Manipulation of alternative splicing by a newly developed inhibitor of clks. J Biol Chem. 2004;279(23):24246–24254. doi: 10.1074/jbc.M314298200
  • Fukuhara T, Hosoya T, Shimizu S, et al. Utilization of host SR protein kinases and RNA-splicing machinery during viral replication. Proc Natl Acad Sci U S A. 2006;103(30):11329–11333. doi: 10.1073/pnas.0604616103
  • Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol. 2010;50(1):259–293. doi: 10.1146/annurev.pharmtox.010909.105654
  • Dominski Z, Kole R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci U S A. 1993;90(18):8673–8677. doi: 10.1073/pnas.90.18.8673
  • Arechavala-Gomeza V, Anthony K, Morgan J, et al. Antisense oligonucleotide-mediated exon skipping for Duchenne muscular dystrophy: progress and challenges. Curr Gene Ther. 2012;12(3):152–160. doi: 10.2174/156652312800840621
  • Rigo F, Hua Y, Krainer AR, et al. Antisense-based therapy for the treatment of spinal muscular atrophy. J Cell Bio. 2012;199(1):21–25. doi: 10.1083/jcb.201207087
  • Kim YJ, Krainer AR. Antisense oligonucleotide therapeutics for cystic fibrosis: recent developments and perspectives. Mol Cells. 2023;46(1):10–20. doi: 10.14348/molcells.2023.2172
  • Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–694. 2020 19:10. doi: 10.1038/s41573-020-0075-7
  • Lee JM, Nobumori C, Tu Y, et al. Modulation of LMNA splicing as a strategy to treat prelamin a diseases. J Clin Invest. 2016;126(4):1592–1602. doi: 10.1172/JCI85908
  • Gonzalo S, Kreienkamp R, Askjaer P. Hutchinson-Gilford progeria syndrome: a premature aging disease caused by LMNA gene mutations. Ageing Res Rev. 2017;33:18. doi: 10.1016/j.arr.2016.06.007
  • Scaffidi P, Misteli T. Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med. 2005;11(4):440–445. 2005 11:4. doi: 10.1038/nm1204
  • Osorio FG, Navarro CL, Cadiñanos J, et al. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med. 2011;3(106):3. doi: 10.1126/scitranslmed.3002847
  • Aartsma-Rus A, Van Ommen GJB. Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA. 2007;13(10):1609. doi: 10.1261/rna.653607
  • Arechavala-Gomeza V, Khoo B, Aartsma-Rus A. Splicing modulation therapy in the treatment of genetic diseases. Appl Clin Genet. 2014;7:245–252. doi: 10.2147/TACG.S71506
  • McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet. 2002;3(10):737–747. doi: 10.1038/nrg908
  • Grünweller A, Wyszko E, Bieber B, et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2’-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res. 2003;31(12):3185–3193. doi: 10.1093/nar/gkg409
  • McCaffrey AP, Meuse L, Karimi M, et al. A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice. Hepatology. 2003;38(2):503–508. doi: 10.1053/jhep.2003.50330
  • Du M, Jillette N, Zhu JJ, et al. CRISPR artificial splicing factors. Nat Commun. 2020;11(1):1–11. doi: 10.1038/s41467-020-16806-4
  • Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 2016;44(14):6549. 2023. doi: 10.1093/nar/gkw533
  • Denichenko P, Mogilevsky M, Cléry A, et al. Specific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nat Commun. 2019;10(1):10. doi: 10.1038/s41467-019-09523-0
  • Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–694. doi: 10.1038/s41573-020-0075-7
  • Bennett Frank C, Krainer AR, Cleveland DW. Antisense Oligonucleotide Therapies for Neurodegenerative Diseases. Annu Rev Neurosci. 2019;42(1):385. doi: 10.1146/annurev-neuro-070918-050501
  • Gapinske M, Luu A, Winter J, et al. CRISPR-SKIP: programmable gene splicing with single base editors. Genome Biol. 2018;19(1):1–11. doi: 10.1186/s13059-018-1482-5
  • Malakar P, Stein I, Saragovi A, et al. Long noncoding RNA MALAT1 regulates cancer glucose metabolism by enhancing mTOR-Mediated translation of TCF7L2. Cancer Res. 2019;79(10):2480–2493. doi: 10.1158/0008-5472.CAN-18-1432
  • Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–419. doi: 10.1016/j.cell.2010.06.040
  • Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–11672. doi: 10.1073/pnas.0904715106
  • Guttman M, Donaghey J, Carey BW, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300. 2011 477:7364. doi: 10.1038/nature10398
  • Liu SJ, Lim DA. Modulating the expression of long non-coding RNAs for functional studies. EMBO Rep. 2018;19(12). doi: 10.15252/embr.201846955
  • Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev. 2003;17(4):438. doi: 10.1101/gad.1064703
  • Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A. 2003;100(17):9779–9784. doi: 10.1073/pnas.1630797100
  • Bartel DP. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004;116(2):281–297. doi: 10.1016/S0092-8674(04)00045-5
  • Zeng Y, Cullen BR. RNA interference in human cells is restricted to the cytoplasm. RNA. 2002;8(7):855. doi: 10.1017/S1355838202020071
  • Lennox KA, Behlke MA. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res. 2016;44(2):863–877. doi: 10.1093/nar/gkv1206
  • Gagnon KT, Li L, Chu Y, et al. RNAi factors are present and active in human cell nuclei. Cell Rep. 2014;6(1):211–221. doi: 10.1016/j.celrep.2013.12.013
  • McKay RA, Miraglia LJ, Cummins LL, et al. Characterization of a potent and specific class of antisense oligonucleotide inhibitor of human protein kinase C-α expression. J Biol Chem. 1999;274(3):1715–1722. doi: 10.1074/jbc.274.3.1715
  • Kurreck J, Wyszko E, Gillen C, et al. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 2002;30(9):1911–1918. doi: 10.1093/nar/30.9.1911
  • Laxton C, Brady K, Moschos S, et al. Selection, optimization, and pharmacokinetic properties of a novel, potent antiviral locked nucleic acid-based antisense oligomer targeting hepatitis C virus internal ribosome entry site. Antimicrob Agents Chemother. 2011;55(7):3105–3114. doi: 10.1128/AAC.00222-11
  • Geary RS, Norris D, Yu R, et al. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev. 2015;87:46–51. doi: 10.1016/j.addr.2015.01.008
  • Shen X, Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018;46(4):1584–1600. doi: 10.1093/nar/gkx1239
  • Crooke ST. Molecular Mechanisms of Antisense Oligonucleotides. Nucleic Acid Ther. 2017;27(2):70–77. doi: 10.1089/nat.2016.0656
  • Arun G, Diermeier SD, Spector DL. Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends Mol Med. 2018;24(3):257. doi: 10.1016/j.molmed.2018.01.001
  • Arun G, Diermeier S, Akerman M, et al. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev. 2016;30(1):34–51. doi: 10.1101/gad.270959.115
  • Shmakov S, Abudayyeh OO, Makarova KS, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell. 2015;60(3):385–397. doi: 10.1016/j.molcel.2015.10.008
  • Zhang Z, Chen J, Zhu Z, et al. CRISPR-Cas13-mediated knockdown of lncRNA-GACAT3 inhibited cell proliferation and motility, and induced apoptosis by increasing p21, Bax, and E-Cadherin expression in bladder cancer. Front Mol Biosci. 2020;7:627774. doi: 10.3389/fmolb.2020.627774
  • Xu D, Cai Y, Tang L, et al. A CRISPR/Cas13-based approach demonstrates biological relevance of vlinc class of long non-coding RNAs in anticancer drug response. Sci Rep. 2020;10(1):1–13. 2020 10:1. doi: 10.1038/s41598-020-58104-5
  • Maxwell IH, Harrison GS, Wood WM, et al. A DNA cassette containing a trimerized SV40 polyadenylation signal which efficiently blocks spurious plasmid-initiated transcription. Biotechniques. 1989;7:276–280.
  • Beaulieu YB, Kleinman CL, Landry-Voyer AM, et al. Polyadenylation-dependent control of Long noncoding RNA expression by the Poly(A)-binding protein nuclear 1. PLoS Genet. 2012;8(11):1003078. doi: 10.1371/journal.pgen.1003078
  • Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-Mediated control of gene repression and activation. Cell. 2014;159(3):647–661. doi: 10.1016/j.cell.2014.09.029
  • Gilbert LA, Larson MH, Morsut L, et al. XCRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442. doi: 10.1016/j.cell.2013.06.044
  • Yang F, Song HX, Xian YS, et al. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell. 2013;49(6):1083–1096. doi: 10.1016/j.molcel.2013.01.010
  • Grote P, Wittler L, Hendrix D, et al. The tissue-specific lncRNA fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24(2):206–214. doi: 10.1016/j.devcel.2012.12.012
  • Ulitsky I, Shkumatava A, Jan CH, et al. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 2011;147(7):1537–1550. doi: 10.1016/j.cell.2011.11.055
  • Xiang JF, Yin QF, Chen T, et al. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 2014;24(5):513–531. doi: 10.1038/cr.2014.35
  • Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2014;517:7536. doi: 10.1038/nature14136
  • Shechner DM, Hacisuleyman E, Younger ST, et al. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. 2015;12(7):664–670. doi: 10.1038/nmeth.3433
  • Xu X, Yang D, Ding JH, et al. ASF/SF2-regulated CaMKIIδ alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell. 2005;120(1):59–72. doi: 10.1016/j.cell.2004.11.036
  • Wang HY, Xu X, Ding JH, et al. SC35 plays a role in T cell development and alternative splicing of CD45. Mol Cell. 2001;7(2):331–342. doi: 10.1016/S1097-2765(01)00181-2
  • Jumaa H, Wei G, Nielsen PJ. Blastocyst formation is blocked in mouse embryos lacking the splicing factor SRp20. Curr Biol. 1999;9(16):899–902. doi: 10.1016/S0960-9822(99)80394-7
  • Fernandes JCR, Acuña SM, Aoki JI, et al. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA. 2019;5(1):17. doi: 10.3390/ncrna5010017