1,089
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Post-transcriptional capping generates coenzyme A-linked RNA

, , , , , ORCID Icon & ORCID Icon show all
Pages 1-12 | Accepted 21 Nov 2023, Published online: 30 Nov 2023

References

  • Chen YG, Kowtoniuk WE, Agarwal I, et al. LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat Chem Biol. 2009;5(12):879–881. doi: 10.1038/nchembio.235
  • Kowtoniuk WE, Shen Y, Heemstra JM, et al. A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA. Proc Natl Acad Sci U S A. 2009;106(19):7768–7773. doi: 10.1073/pnas.0900528106
  • Barvik I, Rejman D, Panova N, et al. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. FEMS Microbiol Rev. 2017;41(2):131–138. doi: 10.1093/femsre/fuw041
  • Jiao X, Doamekpor SK, Bird JG, et al. 5' end nicotinamide adenine dinucleotide cap in human cells promotes RNA decay through DXO-Mediated deNadding. Cell. 2017;168(6):1015–1027 e1010. doi: 10.1016/j.cell.2017.02.019
  • Walters RW, Matheny T, Mizoue LS, et al. Identification of NAD+ capped mRnas in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2017;114(3):480–485. doi: 10.1073/pnas.1619369114
  • Frindert J, Zhang Y, Nübel G, et al. Identification, biosynthesis, and decapping of NAD-Capped RNAs in B. subtilis. Cell Rep. 2018;24(7):1890–1901 e1898. doi: 10.1016/j.celrep.2018.07.047
  • Grudzien-Nogalska E, Bird JG, Nickels BE, et al. “NAD-capQ” detection and quantitation of NAD caps. RNA. 2018;24(10):1418–1425. doi: 10.1261/rna.067686.118
  • Wang Y, Li S, Zhao Y, et al. NAD + -capped RNAs are widespread in the Arabidopsis transcriptome and can probably be translated. Proc Natl Acad Sci U S A. 2019;116(24):12094–12102. doi: 10.1073/pnas.1903682116
  • Zhang H, Zhong H, Zhang S, et al. NAD tagSeq reveals that NAD + -capped RNAs are mostly produced from a large number of protein-coding genes in arabidopsis. Proc Natl Acad Sci U S A. 2019;116(24):12072–12077. doi: 10.1073/pnas.1903683116
  • Doamekpor SK, Sharma S, Kiledjian M, et al. Recent insights into noncanonical 5’ capping and decapping of RNA. J Biol Chem. 2022;298(8):102171. doi: 10.1016/j.jbc.2022.102171
  • Cahova H, Winz ML, Hofer K, et al. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature. 2015;519(7543):374–377. doi: 10.1038/nature14020
  • Bird JG, Zhang Y, Tian Y, et al. The mechanism of RNA 5' capping with NAD+, NADH and desphospho-CoA. Nature. 2016;535(7612):444–447. doi: 10.1038/nature18622
  • Julius C, Yuzenkova Y. Noncanonical RNA-capping: discovery, mechanism, and physiological role debate. Wiley Interdiscip Rev RNA. 2019;10(2):e1512. doi: 10.1002/wrna.1512
  • Huang F. Efficient incorporation of CoA, NAD and FAD into RNA by in vitro transcription. Nucleic Acids Res. 2003;31(3):e8. doi: 10.1093/nar/gng008
  • Julius C, Riaz-Bradley A, Yuzenkova Y. RNA capping by mitochondrial and multi-subunit RNA polymerases. Transcription. 2018;9(5):292–297. doi: 10.1080/21541264.2018.1456258
  • Huang F, Wang G, Coleman T, et al. Synthesis of adenosine derivatives as transcription initiators and preparation of 5’ fluorescein- and biotin-labeled RNA through one-step in vitro transcription. RNA. 2003;9(12):1562–1570. doi: 10.1261/rna.5106403
  • Li N, Yu C, Huang F. Novel cyanine-AMP conjugates for efficient 5’ RNA fluorescent labeling by one-step transcription and replacement of [gamma-32P]ATP in RNA structural investigation. Nucleic Acids Res. 2005;33(4):e37. doi: 10.1093/nar/gni036
  • Winz ML, Cahová H, Nübel G, et al. Capture and sequencing of NAD-capped RNA sequences with NAD captureSeq. Nat Protoc. 2017;12(1):122–149. doi: 10.1038/nprot.2016.163
  • Vvedenskaya IO, Bird JG, Zhang Y, et al. CapZyme-seq comprehensively defines promoter-sequence determinants for RNA 5' capping with NAD+. Mol Cell. 2018;70(3):553–564 e559. doi: 10.1016/j.molcel.2018.03.014
  • Julius C, Yuzenkova Y. Bacterial RNA polymerase caps RNA with various cofactors and cell wall precursors. Nucleic Acids Res. 2017;45(14):8282–8290. doi: 10.1093/nar/gkx452
  • Jackowski S, Rock CO. Metabolism of 4’-phosphopantetheine in Escherichia coli. J Bacteriol. 1984;158(1):115–120. doi: 10.1128/jb.158.1.115-120.1984
  • Bennett BD, Kimball EH, Gao M, et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol. 2009;5(8):593–599. doi: 10.1038/nchembio.186
  • Stewart CJ, Thomas JO, Ball WJ Jr., et al. Coenzyme a analogs. 3. The chemical synthesis of desulfopantetheine 4’-phosphate and its enzymatic conversion to desulfo-coenzyme a. J Am Chem Soc. 1968;90(18):5000–5004. doi: 10.1021/ja01020a039
  • Nazi I, Koteva KP, Wright GD. One-pot chemoenzymatic preparation of coenzyme a analogues. Anal Biochem. 2004;324(1):100–105. doi: 10.1016/j.ab.2003.09.005
  • Sapkota K, Huang F. Efficient one-pot enzymatic synthesis of dephospho coenzyme a. Bioorg Chem. 2018;76:23–27. doi: 10.1016/j.bioorg.2017.10.012
  • Mercer AC, Meier JL, Hur GH, et al. Antibiotic evaluation and in vivo analysis of alkynyl coenzyme a antimetabolites in Escherichia coli. Bioorg Med Chem Lett. 2008;18(22):5991–5994. doi: 10.1016/j.bmcl.2008.07.078
  • van der Westhuyzen R, van der Westhuyzen R, Hammons J, et al. The antibiotic CJ-15,801 is an antimetabolite that hijacks and then inhibits CoA biosynthesis. Chem Biol. 2012;19(5):559–571. doi: 10.1016/j.chembiol.2012.03.013
  • Miller JR, Ohren J, Sarver RW, et al. Phosphopantetheine adenylyltransferase from Escherichia coli: investigation of the kinetic mechanism and role in regulation of coenzyme a biosynthesis. J Bacteriol. 2007;189(22):8196–8205. doi: 10.1128/JB.00732-07
  • Morita M, Oka A. The structure of a transcriptional unit on colicin E1 plasmid. Eur J Biochem. 1979;97(2):435–443. doi: 10.1111/j.1432-1033.1979.tb13131.x
  • Tomizawa J. Control of ColE1 plasmid replication: the process of binding of RNA I to the primer transcript. Cell. 1984;38(3):861–870. doi: 10.1016/0092-8674(84)90281-2
  • Huang F, Bugg CW, Yarus M. RNA-Catalyzed CoA, NAD, and FAD synthesis from phosphopantetheine, NMN, and FMN. Biochemistry. 2000;39(50):15548–15555. doi: 10.1021/bi002061f
  • Coleman TM, Huang F. RNA-catalyzed thioester synthesis. Chem Biol. 2002;9(11):1227–1236. doi: 10.1016/S1074-5521(02)00264-8
  • Milligan JF, Groebe DR, Witherell GW, et al. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987;15(21):8783–8798. doi: 10.1093/nar/15.21.8783
  • Mempin R, Tran H, Chen C, et al. Release of extracellular ATP by bacteria during growth. BMC Microbiol. 2013;13(1):301. doi: 10.1186/1471-2180-13-301
  • Igloi GL. Interaction of tRnas and of phosphorothioate-substituted nucleic acids with an organomercurial. Probing the chemical environment of thiolated residues by affinity electrophoresis. Biochemistry. 1988;27(10):3842–3849. doi: 10.1021/bi00410a048
  • Rhee SS, Burke DH. Tris(2-carboxyethyl)phosphine stabilization of RNA: comparison with dithiothreitol for use with nucleic acid and thiophosphoryl chemistry. Anal Biochem. 2004;325(1):137–143. doi: 10.1016/j.ab.2003.10.019
  • Biondi E, Burke DH. Separating and analyzing sulfur-containing RNAs with organomercury gels. Methods Mol Biol. 2012;883:111–120.
  • Biondi E, Benner SA. Artificially Expanded Genetic Information Systems for New aptamer technologies. Biomedicines. 2018;6(2):53. doi: 10.3390/biomedicines6020053
  • Strauss E, Begley TP. The antibiotic activity of N-pentylpantothenamide results from its conversion to ethyldethia-coenzyme a, a coenzyme a antimetabolite. J Biol Chem. 2002;277(50):48205–48209. doi: 10.1074/jbc.M204560200
  • Izard T, Geerlof A. The crystal structure of a novel bacterial adenylyltransferase reveals half of sites reactivity. EMBO J. 1999;18(8):2021–2030. doi: 10.1093/emboj/18.8.2021
  • Izard T. The crystal structures of phosphopantetheine adenylyltransferase with bound substrates reveal the enzyme’s catalytic mechanism 1 1Edited by K. Nagai. J Mol Biol. 2002;315(4):487–495. doi: 10.1006/jmbi.2001.5272
  • Izard T. A novel adenylate binding site confers phosphopantetheine adenylyltransferase interactions with coenzyme a. J Bacteriol. 2003;185(14):4074–4080. doi: 10.1128/JB.185.14.4074-4080.2003
  • Geerlof A, Lewendon A, Shaw WV. Purification and characterization of phosphopantetheine adenylyltransferase from Escherichia coli. J Biol Chem. 1999;274(38):27105–27111. doi: 10.1074/jbc.274.38.27105
  • Ahmad S, Wang B, Walker MD, et al. An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature. 2019;575(7784):674–678. doi: 10.1038/s41586-019-1735-9
  • Locherer C, Buhler N, Lafrenz P, et al. Staphylococcus aureus small RNAs possess dephospho-CoA 5'-caps, but No CoAlation marks. Noncoding RNA. 2022;8(4):46. doi: 10.3390/ncrna8040046
  • Shao X, Zhang H, Zhu Z, et al. DpCoA tagSeq: barcoding dpCoA-Capped RNA for direct nanopore sequencing via Maleimide-thiol reaction. Anal Chem. 2023;95(29):11124–11131. doi: 10.1021/acs.analchem.3c02063
  • Zhou W, Guan Z, Zhao F, et al. Structural insights into dpCoA-RNA decapping by NudC. RNA Biol. 2021;18(sup1):244–253. doi: 10.1080/15476286.2021.1936837
  • Spangler JR, Huang F. The E. coli NudL enzyme is a Nudix hydrolase that cleaves CoA and its derivatives. bioRxiv. 2020. doi:10.1101/2020.01.31.929182
  • Gilbert W. Origin of life: the RNA world. Nature. 1986;319(6055):618. doi: 10.1038/319618a0
  • Samuelian JS, Gremminger TJ, Song Z, et al. ?An RNA aptamer that shifts the reduction potential of metabolic cofactors. Nat Chem Biol. 2022;18(11):1263–1269. doi: 10.1038/s41589-022-01121-4
  • Li N, Huang F. Ribozyme-catalyzed aminoacylation from CoA thioesters. Biochemistry. 2005;44(11):4582–4590. doi: 10.1021/bi047576b
  • Brand LA, Strauss E. Characterization of a new pantothenate kinase isoform from Helicobacter pylori. J Biol Chem. 2005;280(21):20185–20188. doi: 10.1074/jbc.C500044200
  • Sousa R, Padilla R. A mutant T7 RNA polymerase as a DNA polymerase. EMBO J. 1995;14(18):4609–4621. doi: 10.1002/j.1460-2075.1995.tb00140.x
  • Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–3415. doi: 10.1093/nar/gkg595
  • Lucas JK, Gruenke PR, Burke DH. Minimizing amplification bias during reverse transcription for in vitro selections. RNA. 2023;29(8):1301–1315. doi: 10.1261/rna.079650.123
  • Ditzler MA, Lange MJ, Bose D, et al. High-throughput sequence analysis reveals structural diversity and improved potency among RNA inhibitors of HIV reverse transcriptase. Nucleic Acids Res. 2013;41(3):1873–1884. doi: 10.1093/nar/gks1190
  • Alam KK, Chang JL, Burke DH. Fastaptamer: a Bioinformatic Toolkit for high-throughput sequence analysis of combinatorial selections. Mol Ther Nucleic Acids. 2015;4(3):e230. doi: 10.1038/mtna.2015.4
  • Kramer ST, Gruenke PR, Alam KK, et al. FASTAptameR 2.0: a web tool for combinatorial sequence selections. Mol Ther Nucleic Acids. 2022;29:862–870. doi: 10.1016/j.omtn.2022.08.030