679
Views
0
CrossRef citations to date
0
Altmetric
Research paper

CCAR-1 works together with the U2AF large subunit UAF-1 to regulate alternative splicing

Pages 1-11 | Accepted 17 Nov 2023, Published online: 21 Dec 2023

References

  • Baralle FE, Giudice J. Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol. 2017;18(7):437–451. doi: 10.1038/nrm.2017.27
  • Jiang W, Chen L. Alternative splicing: human disease and quantitative analysis from high-throughput sequencing. Comput Struct Biotechnol J. 2021;19:183–195. doi: 10.1016/j.csbj.2020.12.009
  • Liu XX, Guo Q-H, Xu W-B, et al. Rapid Regulation of Alternative Splicing in Response to Environmental Stresses. Front Plant Sci. 2022;13:832177. doi: 10.3389/fpls.2022.832177
  • Biamonti G, Caceres JF. Cellular stress and RNA splicing. Trends Biochem Sci. 2009;34(3):146–153. doi: 10.1016/j.tibs.2008.11.004
  • Hallegger M, Llorian M, and Smith CW. Alternative splicing: global insights. FEBS J. 2010;277(4):856–66. doi: 10.1111/j.1742-4658.2009.07521.x
  • Kim E, Goren A, Ast G. Alternative splicing and disease. RNA Biol. 2008;5(1):17–9. doi: 10.4161/rna.5.1.5944
  • Ramani AK, Calarco JA, Pan Q, et al. Genome-wide analysis of alternative splicing in caenorhabditis elegans. Genome Res. 2011;21(2):342–348. doi: 10.1101/gr.114645.110
  • Zahler AM. Alternative splicing in C. elegans. WormBook. 2005;1–13. doi: 10.1895/wormbook.1.31.1
  • Zahler AM. Pre-mRNA splicing and its regulation in Caenorhabditis elegans. WormBook. 2012;1–21. doi: 10.1895/wormbook.1.31.2
  • Zhang Y, Qian J, Gu C, et al. Alternative splicing and cancer: a systematic review. Sig Transduct Target Ther. 2021;6(1):78. doi: 10.1038/s41392-021-00486-7
  • Dutertre M, Sanchez G, Barbier J, et al. The emerging role of pre-messenger RNA splicing in stress responses: sending alternative messages and silent messengers. RNA Biol. 2011;8(5):740–7. doi: 10.4161/rna.8.5.16016
  • Anantharaman V, Aravind L. Analysis of DBC1 and its homologs suggests a potential mechanism for regulation of sirtuin domain deacetylases by NAD metabolites. Cell Cycle. 2008;7(10):1467–1472. doi: 10.4161/cc.7.10.5883
  • Brunquell J, Yuan J, Erwin A, et al. DBC1/CCAR2 and CCAR1 are largely disordered proteins that have evolved from one common ancestor. Biomed Res Int. 2014;2014:1–13. doi: 10.1155/2014/418458
  • Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature. 2008;451(7178):583–586. doi: 10.1038/nature06500
  • Kim W, Ryu J, Kim JE. CCAR2/DBC1 and Hsp60 positively regulate expression of survivin in neuroblastoma cells. Int J Mol Sci. 2019;20(1):20(1. doi: 10.3390/ijms20010131
  • Li Z, Chen L, Kabra N, et al. Inhibition of SUV39H1 methyltransferase activity by DBC1. J Biol Chem. 2009;284(16):10361–10366. doi: 10.1074/jbc.M900956200
  • Raynes R, Pombier KM, Nguyen K, et al. The SIRT1 modulators AROS and DBC1 regulate HSF1 activity and the heat shock response. PLoS One. 2013;8(1):e54364. doi: 10.1371/journal.pone.0054364
  • Xu B, Li Q, Chen N, et al. The LIM protein Ajuba recruits DBC1 and CBP/p300 to acetylate ERα and enhances ERα target gene expression in breast cancer cells. Nucleic Acids Res. 2019;47(5):2322–2335. doi: 10.1093/nar/gky1306
  • Zhao W, Kruse J-P, Tang Y, et al. Negative regulation of the deacetylase SIRT1 by DBC1. Nature. 2008;451(7178):587–590. doi: 10.1038/nature06515
  • Kong S, Dong H, Song J, et al. Deleted in breast cancer 1 suppresses B cell activation through RelB and is regulated by IKKα phosphorylation. J Immunol. 2015;195(8):3685–93. doi: 10.4049/jimmunol.1500713
  • Tong B, Hornak AJ, Maison SF, et al. Oncomodulin, an EF-Hand Ca2+ Buffer, is critical for maintaining cochlear function in mice. J Neurosci. 2016;36(5):1631–1635. doi: 10.1523/JNEUROSCI.3311-15.2016
  • Kolobynina KG, Solovyova VV, Levay K, et al. Emerging roles of the single EF-hand Ca2+ sensor tescalcin in the regulation of gene expression, cell growth and differentiation. J Cell Sci. 2016;129(19):3533–3540. doi: 10.1242/jcs.191486
  • Guo W, Sun B, Xiao Z, et al. The EF-hand Ca2+ binding domain is not required for cytosolic Ca2+ activation of the cardiac ryanodine receptor. J Biol Chem. 2016;291(5):2150–2160. doi: 10.1074/jbc.M115.693325
  • Close P, East P, Dirac-Svejstrup AB, et al. DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation. Nature. 2012;484(7394):386–389. doi: 10.1038/nature10925
  • van Oosten-Hawle P, Porter RS, Morimoto RI. Regulation of organismal proteostasis by transcellular chaperone signaling. Cell. 2013;153(6):1366–78. doi: 10.1016/j.cell.2013.05.015
  • Gao X, Teng Y, Luo J, et al. The survival motor neuron gene smn-1 interacts with the U2AF large subunit gene uaf-1 to regulate Caenorhabditis elegans lifespan and motor functions. RNA Biol. 2014;11(9):1148–60. doi: 10.4161/rna.36100
  • Irimia M, Weatheritt R, Ellis JD, et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell. 2014;159(7):1511–23. doi: 10.1016/j.cell.2014.11.035
  • Tapial J, Ha KCH, Sterne-Weiler T, et al. An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res. 2017;27(10):1759–1768. doi: 10.1101/gr.220962.117
  • Torres-Mendez A, Bonnal S, Marquez Y, et al. A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nat Ecol Evol. 2019;3(4):691–701. doi: 10.1038/s41559-019-0813-6
  • Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf. 2013;14(1):128. doi: 10.1186/1471-2105-14-128
  • Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7. doi: 10.1093/nar/gkw377
  • Vu NT, Park MA, Shultz JC, et al. hnRNP U enhances caspase-9 splicing and is modulated by AKT-dependent phosphorylation of hnRNP L. J Biol Chem. 2013;288(12):8575–8584. doi: 10.1074/jbc.M112.443333
  • Fu R, Zhu Y, Jiang X, et al. CCAR-1 affects hemidesmosome biogenesis by regulating unc-52/perlecan alternative splicing in the C. elegans epidermis. J Cell Sci. 2018;131(11. doi: 10.1242/jcs.214379
  • Ma L, Horvitz HR, Kim SK. Mutations in the Caenorhabditis elegans U2AF large subunit UAF-1 alter the choice of a 3′ splice site in vivo. PLoS Genet. 2009;5(11):e1000708. doi: 10.1371/journal.pgen.1000708
  • Caudron-Herger M, Jansen RE, Wassmer E, et al. RBP2GO: a comprehensive pan-species database on RNA-binding proteins, their interactions and functions. Nucleic Acids Res. 2021;49(D1):D425–D436. doi: 10.1093/nar/gkaa1040
  • Yu W, He L-R, Zhao Y-C, et al. Dynamic protein-protein interaction subnetworks of lung cancer in cases with smoking history. Chin J Cancer. 2012;32(2):84–90. doi: 10.5732/cjc.012.10099
  • Ma L, Gao X, Luo J, et al. The Caenorhabditis elegans gene mfap-1 encodes a nuclear protein that affects alternative splicing. PLoS Genet. 2012;8(7):e1002827. doi: 10.1371/journal.pgen.1002827
  • Hollins C, ZORIO DAR, MACMORRIS M, et al. U2AF binding selects for the high conservation of the C. elegans 3′ splice site. RNA. 2005;11(3):248–53. doi: 10.1261/rna.7221605
  • Kielkopf CL, Lucke S, Green MR. U2AF homology motifs: protein recognition in the RRM world. Genes Dev. 2004;18(13):1513–1526. doi: 10.1101/gad.1206204
  • Brunquell J, Raynes R, Bowers P, et al. CCAR-1 is a negative regulator of the heat-shock response in Caenorhabditis elegans. Aging Cell. 2018;17(5):e12813. doi: 10.1111/acel.12813
  • Lundquist EA, Herman RK. The mec-8 gene of Caenorhabditis elegans affects muscle and sensory neuron function and interacts with three other genes: unc-52, smu-1 and smu-2. Genetics. 1994;138(1):83–101. doi: 10.1093/genetics/138.1.83
  • Sugaya K, Hongo E, Ishihara Y, et al. The conserved role of Smu1 in splicing is characterized in its mammalian temperature-sensitive mutant. J Cell Sci. 2006;119(23):4944–51. doi: 10.1242/jcs.03288
  • Muthu M, Somagoni J, Cheriyan VT, et al. Identification and testing of novel CARP-1 functional mimetic compounds as inhibitors of non-small cell lung and triple negative breast cancers. J Biomed Nanotechnol. 2015;11(9):1608–1627. doi: 10.1166/jbn.2015.2099
  • Colman L, Caggiani M, Leyva A, et al. The protein deleted in breast cancer-1 (DBC1) regulates vascular response and formation of aortic dissection during angiotensin II infusion. Sci Rep. 2020;10(1):6772. doi: 10.1038/s41598-020-63841-8
  • Fang Q, Bellanti JA, Zheng SG. Advances on the role of the deleted in breast cancer (DBC1) in cancer and autoimmune diseases. J Leukocyte Biol. 2021;109(2):449–454. doi: 10.1002/JLB.6MR0320-086R
  • Muthu M, Cheriyan VT, Rishi AK. CARP-1/CCAR1: a biphasic regulator of cancer cell growth and apoptosis. Oncotarget. 2015;6(9):6499–510. doi: 10.18632/oncotarget.3376
  • Santos L, Colman L, Contreras P, et al. A novel form of deleted in breast cancer 1 (DBC1) lacking the N-terminal domain does not bind SIRT1 and is dynamically regulated in vivo. Sci Rep. 2019;9(1):14381. doi: 10.1038/s41598-019-50789-7