2,201
Views
0
CrossRef citations to date
0
Altmetric
Review

Structural and computational studies of HIV-1 RNA

ORCID Icon & ORCID Icon
Pages 1-32 | Accepted 21 Nov 2023, Published online: 15 Dec 2023

References

  • Mahmoudabadi G, Phillips R. A comprehensive and quantitative exploration of thousands of viral genomes. Elife. 2018;7:e31955. doi:10.7554/eLife.31955
  • López-Lastra M, Ramdohr P, Letelier A, et al. Translation initiation of viral mRnas. Rev Med Virol. 2010;20(3):177–195. doi:10.1002/rmv.649
  • Ortn J, Parra F. Structure and function of RNA replication. Annu Rev Microbiol. 2006;60:305–326. doi:10.1146/annurev.micro.60.080805.142248
  • Kun L, Heng X, Summers MF. Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol. 2011;410(4):609–633. doi:10.1016/j.jmb.2011.04.029
  • Bushell M, Sarnow P. Hijacking the translation apparatus by RNA viruses. J Cell Bio. 2002;158(3):395–399. doi:10.1083/jcb.200205044
  • Dubois N, Marquet R, Paillart J-C, et al. Retroviral RNA dimerization: from structure to functions. Front Microbiol. 2018;9:527. doi:10.3389/fmicb.2018.00527
  • Moore MD, Wei-Shau H. HIV-1 RNA dimerization: it takes two to tango. AIDS Rev. 2009;11(2):91.
  • Pflug A, Guilligay D, Reich S, et al. Structure of influenza a polymerase bound to the viral RNA promoter. Nature. 2014;516(7531):355–360. doi:10.1038/nature14008
  • Berkhout B, Silverman RH, Jeang K-T. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell. 1989;59(2):273–282. doi:10.1016/0092-8674(89)90289-4
  • Lee K-M, Chen C-J, Shih S-R. Regulation mechanisms of viral IRES-driven translation. Trends Microbiol. 2017;25(7):546–561. doi:10.1016/j.tim.2017.01.010
  • Kumar M, Kuroda K, Dhangar K, et al. Potential emergence of antiviral-resistant pandemic viruses via environmental drug exposure of animal reservoirs. Environ Sci Technol. 2020;54(14):8503–8505. doi:10.1021/acs.est.0c03105
  • Boerneke MA, Ehrhardt JE, Weeks KM. Physical and functional analysis of viral RNA genomes by SHAPE. Annu Rev Virol. 2019;6(1):93–117. doi: 10.1146/annurev-virology-092917-043315
  • Campillo-Balderas JA, Lazcano A, Becerra A. Viral genome size distribution does not correlate with the antiquity of the host lineages. Front Ecol Environ. 2015;3:143. doi:10.3389/fevo.2015.00143
  • Baltimore D. Expression of animal virus genomes. Bacteriol Rev. 1971;35(3):235–241. doi:10.1128/br.35.3.235-241.1971
  • Coffin J, Blomberg J, Fan H, et al. ICTV virus taxonomy profile: Retroviridae 2021. J Gen Virol. 2021;102(12):2021. doi: 10.1099/jgv.0.001712
  • Weiss RA. The discovery of endogenous retroviruses. Retrovirology. 2006;3(1):1–11. doi: 10.1186/1742-4690-3-67
  • Temin HM, Mizutami S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970;226(5252):1211–1213. doi: 10.1038/2261211a0
  • Baltimore D. Viral RNA-dependent DNA polymerase: RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature. 1970;226(5252):1209–1211. doi:10.1038/2261209a0
  • Temin HM. Nature of the provirus of Rous sarcoma. Nat Cancer Inst Monogr. 1964;17:557–570.
  • Barré-Sinoussi F, Chermann J-C, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):868–871. doi: 10.1126/science.6189183
  • Gallo RC, Salahuddin SZ, Popovic M, et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science. 1984;224(4648):500–503. doi: 10.1126/science.6200936
  • Crespo R, Rao S, Mahmoudi T, et al. HIV-1 RNA metabolism and viral latency. Front Cell Infect Microbiol. 2022;12:733. doi: 10.3389/fcimb.2022.855092
  • Chameettachal A, Mustafa F, Rizvi TA. Understanding retroviral life cycle and its genomic RNA packaging. J Mol Biol. 2022;435(3):167924. doi: 10.1016/j.jmb.2022.167924
  • Turner BG, Summers MF. Structural biology of HIV 1 1Edited by P. E. Wright. J Mol Biol. 1999;285(1):1–32. doi:10.1006/jmbi.1998.2354
  • Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol. 2012;10(4):279–290. doi:10.1038/nrmicro2747
  • Nisole S, Sab A. Early steps of retrovirus replicative cycle. Retrovirology. 2004;1(1):9–20. doi: 10.1186/1742-4690-1-9
  • Jiang M, Mak J, Ladha A, et al. Identification of tRnas incorporated into wild-type and mutant human immunodeficiency virus type 1. J Virol. 1993;67(6):3246–3253. doi:10.1128/jvi.67.6.3246-3253.1993
  • Maertens GN, Engelman AN, Cherepanov P. Structure and function of retroviral integrase. Nat Rev Microbiol. 2022;20(1):20–34. doi:10.1038/s41579-021-00586-9
  • Müller TG, Zila V, Müller B, et al. Nuclear capsid uncoating and reverse transcription of HIV-1. Annu Rev Virol. 2022;9(1):261–284. doi: 10.1146/annurev-virology-020922-110929
  • D’Souza V, Summers MF. How retroviruses select their genomes. Nat Rev Microbiol. 2005;3(8):643–655. doi:10.1038/nrmicro1210
  • Watts JM, Dang KK, Gorelick RJ, et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature. 2009;460(7256):711–716. doi:10.1038/nature08237
  • Tomezsko PJ, Corbin VD, Gupta P, et al. Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Nature. 2020;582(7812):438–442. doi: 10.1038/s41586-020-2253-5
  • Tomezsko P, Swaminathan H, Rouskin S. Viral RNA structure analysis using DMS-MaPseq. Methods. 2020;183:68–75. doi:10.1016/j.ymeth.2020.04.001
  • Desselberger U, Racaniello VR, Zazra JJ, et al. The 3ʹ and 5ʹ-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene. 1980;8(3):315–328. doi:10.1016/0378-1119(80)90007-4
  • Brierley I, Digard P, Inglis SC. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989;57(4):537–547. doi:10.1016/0092-8674(89)90124-4
  • Aldovini A, Young RA. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol. 1990;64(5):1920–1926. doi:10.1128/jvi.64.5.1920-1926.1990
  • Jensen S, Randrup Thomsen A. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol. 2012;86(6):2900–2910. doi:10.1128/JVI.05738-11
  • Al-Hashimi HM. NMR studies of nucleic acid dynamics. J Magn Reson. 2013;237:191–204. doi:10.1016/j.jmr.2013.08.014
  • Liu B, Shi H, Al-Hashimi HM. Developments in solution-state NMR yield broader and deeper views of the dynamic ensembles of nucleic acids. Curr Opin Struct Biol. 2021;70:16–25. doi:10.1016/j.sbi.2021.02.007
  • Jackson RW, Smathers CM, Robart AR. General strategies for RNA X-ray crystallography. Molecules. 2023;28(5):2111. doi:10.3390/molecules28052111
  • Haiyun M, Jia X, Zhang K, et al. Cryo-EM advances in RNA structure determination. Signal Transduct Target Ther. 2022;7(1):58. doi:10.1038/s41392-022-00916-0
  • Wei-Shau H, Hughes SH. HIV-1 reverse transcription. Cold Spring Harb Perspect Med. 2012;2(10):a006882. doi:10.1101/cshperspect.a006882
  • Liu S, Comandur R, Jones CP, et al. Anticodon-like binding of the HIV-1 tRNA-like element to human lysyl-tRNA synthetase. RNA. 2016;22(12):1828–1835. doi:10.1261/rna.058081.116
  • Cen S, Javanbakht H, Kim S, et al. Retrovirus-specific packaging of aminoacyl-tRNA synthetases with cognate primer tRnas. J Virol. 2002;76(24):13111–13115. doi:10.1128/JVI.76.24.13111-13115.2002
  • Dewan V, Reader J, Forsyth K-M. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development. Top Curr Chem. 2014;344:293–329.
  • Bilbille Y, Vendeix FA, Guenther R, et al. The structure of the human tRNA3Lys anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs. Nucleic Acids Res. 2009;37(10):3342–3353. doi:10.1093/nar/gkp187
  • Song Z, Gremminger T, Singh G, et al. The three-way junction structure of the HIV-1 PBS-segment binds host enzyme important for viral infectivity. Nucleic Acids Res. 2021;49(10):5925–5942. doi: 10.1093/nar/gkab342
  • Das K, Martinez SE, DeStefano JJ, et al. Structure of HIV-1 RT/dsRNA initiation complex prior to nucleotide incorporation. Proc Natl Acad Sci, USA. 2019;116(15):7308–7313. doi:10.1073/pnas.1814170116
  • Larsen KP, Kalyani Mathiharan Y, Kappel K, et al. Architecture of an HIV-1 reverse transcriptase initiation complex. Nature. 2018;557(7703):118–122. doi:10.1038/s41586-018-0055-9
  • Das K, Martinez SE, Arnold E. Structural insights into HIV reverse transcriptase mutations Q151M and Q151M complex that confer multinucleoside drug resistance. Antimicrob Agents Chemother. 2017;61(6):e00224–17. doi:10.1128/AAC.00224-17
  • Michiko Obayashi C, Shinohara Y, Masuda T, et al. Influence of the 5ʹ-terminal sequences on the 5ʹ-UTR structure of HIV-1 genomic RNA. Sci Rep. 2021;11(1):10920. doi:10.1038/s41598-021-90427-9
  • Bourbigot S, Ramalanjaona N, Boudier C, et al. How the HIV-1 nucleocapsid protein binds and destabilises the (-)primer binding site during reverse transcription. J Mol Biol. 2008;383(5):1112–1128. doi:10.1016/j.jmb.2008.08.046
  • Larsen KP, Choi J, Jackson LN, et al. Distinct conformational states underlie pausing during initiation of HIV-1 reverse transcription. J Mol Biol. 2020;432(16):4499–4522. doi:10.1016/j.jmb.2020.06.003
  • Betty H, Larsen KP, Zhang J, et al. High-resolution view of HIV-1 reverse transcriptase initiation complexes and inhibition by NNRTI drugs. Nat Commun. 2021;12(1):2500. doi:10.1038/s41467-021-22628-9
  • Das K, Martinez SE, Bandwar RP, et al. Structures of HIV-1 RT-RNA/DNA ternary complexes with dATP and nevirapine reveal conformational flexibility of RNA/DNA: insights into requirements for RNase H cleavage. Nucleic Acids Res. 2014;42(12):8125–8137. doi:10.1093/nar/gku487
  • František Potužnk J, Cahová H, Prasad VR, et al. It’s the little things (in viral RNA). MBio. 2020;11(5):e02131–20. doi:10.1128/mBio.02131-20
  • El Kazzi P, Rabah N, Chamontin C, et al. Internal RNA 2ʹO-methylation in the HIV-1 genome counteracts ISG20 nuclease-mediated antiviral effect. Nucleic Acids Res. 2023;51(6):2501–2515. doi: 10.1093/nar/gkac996
  • Kroun Damgaard C, Sloth Andersen E, Knudsen B, et al. RNA interactions in the 5ʹ region of the HIV-1 genome. J Mol Biol. 2004;336(2):369–379. doi:10.1016/j.jmb.2003.12.010
  • Wilkinson KA, Gorelick RJ, Vasa SM, et al. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol. 2008;6(4):e96. doi:10.1371/journal.pbio.0060096
  • Coey A, Larsen K, Puglisi JD, et al. Heterogeneous structures formed by conserved RNA sequences within the HIV reverse transcription initiation site. RNA. 2016;22(11):1689–1698. doi:10.1261/rna.056804.116
  • Gilboa E, Mitra SW, Goff S, et al. A detailed model of reverse transcription and tests of crucial aspects. Cell. 1979;18(1):93–100. doi:10.1016/0092-8674(79)90357-X
  • Fukuda H, Chujo T, Wei F-Y, et al. Cooperative methylation of human tRNA3Lys at positions A58 and U54 drives the early and late steps of HIV-1 replication. Nucleic Acids Res. 2021;49(20):11855–11867. doi:10.1093/nar/gkab879
  • Comandur R, Olson ED, Musier-Forsyth K. Conservation of tRNA mimicry in the 5ʹ-untranslated region of distinct HIV-1 subtypes. RNA. 2017;23(12):1850–1859. doi:10.1261/rna.062182.117
  • Cantara WA, Pathirage C, Hatterschide J, et al. Phosphomimetic S207D lysyl — tRNA synthetase binds HIV-1 5ʹ UTR in an open conformation and increases RNA dynamics. Viruses. 2022;14(7):1556. doi:10.3390/v14071556
  • Isel C, Ehresmann C, Marquet R. Initiation of HIV reverse transcription. Viruses. 2010;2(1):213–243. doi:10.3390/v2010213
  • Kohlstaedt LA, Wang J, Friedman JM, et al. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992;256(5065):1783–1790. doi:10.1126/science.1377403
  • Jacobo-Molina A, Ding J, Nanni RG, et al. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 a resolution shows bent DNA. Proc Natl Acad Sci, USA. 1993;90(13):6320–6324. doi:10.1073/pnas.90.13.6320
  • Rodgers DW, Gamblin SJ, Harris BA, et al. The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc Natl Acad Sci, USA. 1995;92(4):1222–1226. doi:10.1073/pnas.92.4.1222
  • Huang H, Chopra R, Verdine GL, et al. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science. 1998;282(5394):1669–1675. doi:10.1126/science.282.5394.1669
  • Guangdi L, Wang Y, De Clercq E. Approved HIV reverse transcriptase inhibitors in the past decade. Acta Pharm Sin B. 2022;12(4):1567–1590. doi:10.1016/j.apsb.2021.11.009
  • Lange MJ, Nguyen PD, Callaway MK, et al. RNA-protein interactions govern antiviral specificity and encapsidation of broad spectrum anti-HIV reverse transcriptase aptamers. Nucleic Acids Res. 2017;45(10):6087–6097. doi:10.1093/nar/gkx155
  • Wang M-F, Yan L, Xu-Dan B, et al. Polypyridyl ruthenium complexes as bifunctional TAR RNA binders and HIV-1 reverse transcriptase inhibitors. J Inorg Biochem. 2022;234:111880. doi:10.1016/j.jinorgbio.2022.111880
  • Guo Y-X, Liu M, Zhou Y-Q, et al. Terpyridyl ruthenium complexes as visible spectral probe for poly (A) RNA and bifunctional TAR RNA binders and HIV-1 reverse transcriptase inhibitors. Inorganica Chim Acta. 2022;539:121027. doi:10.1016/j.ica.2022.121027
  • Wang Z, Wang W, Cheng Cui Y, et al. HIV-1 employs multiple mechanisms to resist Cas9/single guide RNA targeting the viral primer binding site. J Virol. 2018;92(20):e01135–18. doi:10.1128/JVI.01135-18
  • Kaminski R, Chen Y, Salkind J, et al. Negative feedback regulation of HIV-1 by gene editing strategy. Sci Rep. 2016;6(1):31527. doi:10.1038/srep31527
  • Beltz H, Clauss C, Piémont E, et al. Structural determinants of HIV-1 nucleocapsid protein for cTAR DNA binding and destabilization, and correlation with inhibition of self-primed DNA synthesis. J Mol Biol. 2005;348(5):1113–1126. doi:10.1016/j.jmb.2005.02.042
  • Purohit Basu V, Song M, Gao L, et al. Strand transfer events during HIV-1 reverse transcription. Virus Res. 2008;134(1–2):19–38. doi:10.1016/j.virusres.2007.12.017
  • Chen Y, Balakrishnan M, Roques BP, et al. Mechanism of minus strand strong stop transfer in HIV-1 reverse transcription. J Biol Chem. 2003;278(10):8006–8017. doi:10.1074/jbc.M210959200
  • Ohi Y, Clever JL. Sequences in the 5ʹ and 3ʹ R elements of human immunodeficiency virus type 1 critical for efficient reverse transcription. J Virol. 2000;74(18):8324–8334. doi:10.1128/JVI.74.18.8324-8334.2000
  • Belfetmi A, Zargarian L, Tisné C, et al. Insights into the mechanisms of RNA secondary structure destabilization by the HIV-1 nucleocapsid protein. RNA. 2016;22(4):506–517. doi: 10.1261/rna.054445.115
  • McCauley MJ, Rouzina I, Jasmine L, et al. Significant differences in RNA structure destabilization by HIV-1 Gag∆p6 and NCp7 proteins. Viruses. 2020;12(5):484. doi:10.3390/v12050484
  • Telesnitsky A, Goff SP. Reverse transcriptase and the generation of retroviral DNA. Retroviruses. 2011.
  • Imamichi H, Dewar RL, Adelsberger JW, et al. Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc Natl Acad Sci, USA. 2016;113(31):8783–8788. doi:10.1073/pnas.1609057113
  • Wiegand A, Spindler J, Hong FF, et al. Single-cell analysis of HIV-1 transcriptional activity reveals expression of proviruses in expanded clones during ART. Proc Natl Acad Sci, USA. 2017;114(18):E3659–E3668. doi:10.1073/pnas.1617961114
  • Pasternak AO, Berkhout B. What do we measure when we measure cell-associated HIV RNA. Retrovirology. 2018;15(1):13. doi:10.1186/s12977-018-0397-2
  • Shortridge MD, Wille PT, Jones AN, et al. An ultra-high affinity ligand of HIV-1 TAR reveals the RNA structure recognized by P-TEFb. Nucleic Acids Res. 2019;47(3):1523–1531. doi:10.1093/nar/gky1197
  • Aboul-Ela F, Karn J, Varani G. The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. J Mol Biol. 1995;253(2):313–332. doi:10.1006/jmbi.1995.0555
  • Faber C, Sticht H, Schweimer K, et al. Structural rearrangements of HIV-1 Tat-responsive RNA upon binding of neomycin B. J Biol Chem. 2000;275(27):20660–20666. doi:10.1074/jbc.M000920200
  • Zhihua D, Lind KE, James TL. Structure of TAR RNA complexed with a Tat-TAR interaction nanomolar inhibitor that was identified by computational screening. Chem Biol. 2002;9(6):707–712. doi:10.1016/S1074-5521(02)00151-5
  • Murchie AI, Davis B, Isel C, et al. Structure-based drug design targeting an inactive RNA conformation: exploiting the flexibility of HIV-1 TAR RNA. J Mol Biol. 2004;336(3):625–638. doi: 10.1016/j.jmb.2003.12.028
  • Davis B, Afshar M, Varani G, et al. Rational design of inhibitors of HIV-1 TAR RNA through the stabilisation of electrostatic “hot spots”. J Mol Biol. 2004;336(2):343–356. doi: 10.1016/j.jmb.2003.12.046
  • Davidson A, Leeper TC, Athanassiou Z, et al. Simultaneous recognition of HIV-1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein. Proc Natl Acad Sci, USA. 2009;106(29):11931–11936. doi:10.1073/pnas.0900629106
  • Davidson A, Begley DW, Lau C, et al. A small-molecule probe induces a conformation in HIV TAR RNA capable of binding drug-like fragments. J Mol Biol. 2011;410(5):984–996. doi:10.1016/j.jmb.2011.03.039
  • Davidson A, Patora-Komisarska K, Robinson JA, et al. Essential structural requirements for specific recognition of HIV TAR RNA by peptide mimetics of Tat protein. Nucleic Acids Res. 2011;39(1):248–256. doi:10.1093/nar/gkq713
  • Borkar AN, Michael F Bardaro CC Jr, Aprile FA, et al. Structure of a low-population binding intermediate in protein-RNA recognition. Proc Natl Acad Sci, USA. 2016;113(26):7171–7176. doi:10.1073/pnas.1521349113
  • Aboul-Ela F, Karn J, Varani G. Structure of HIV-1 TAR RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge. Nucleic Acids Res. 1996;24(20):3974–3981. doi:10.1093/nar/24.20.3974
  • Shashank Chavali S, Mali SM, Jenkins JL, et al. Co-crystal structures of HIV TAR RNA bound to lab-evolved proteins show key roles for arginine relevant to the design of cyclic peptide TAR inhibitors. J Biol Chem. 2020;295(49):16470–16486. doi:10.1074/jbc.RA120.015444
  • Belashov IA, Crawford DW, Cavender CE, et al. Structure of HIV TAR in complex with a lab-evolved RRM provides insight into duplex RNA recognition and synthesis of a constrained peptide that impairs transcription. Nucleic Acids Res. 2018;46(13):6401–6415. doi:10.1093/nar/gky529
  • Pham VV, Salguero C, Nahar Khan S, et al. HIV-1 Tat interactions with cellular 7SK and viral TAR RNAs identifies dual structural mimicry. Nat Commun. 2018;9(1):4266. doi:10.1038/s41467-018-06591-6
  • De Nicola B, Lech CJ, Heddi B, et al. Structure and possible function of a G-quadruplex in the long terminal repeat of the proviral HIV-1 genome. Nucleic Acids Res. 2016;44(13):6442–6451. doi:10.1093/nar/gkw432
  • Butovskaya E, Heddi B, Bakalar B, et al. Major G-quadruplex form of HIV-1 LTR reveals a (3+1) folding topology containing a stem-loop. J Am Chem Soc. 2018;140(42):13654–13662. doi:10.1021/jacs.8b05332
  • Schulze-Gahmen U, Hurley JH. Structural mechanism for HIV-1 TAR loop recognition by Tat and the super elongation complex. Proc Natl Acad Sci, USA. 2018;115(51):12973–12978. doi:10.1073/pnas.1806438115
  • Huang W, Emani PS, Varani G, et al. Ultraslow domain motions in HIV-1 TAR RNA revealed by solid-state deuterium NMR. J Phys Chem B. 2017;121(1):110–117. doi:10.1021/acs.jpcb.6b11041
  • Krawczyk K, Sim AY, Knapp B, et al. Tertiary element interaction in HIV-1 TAR. J Chem Inf Model. 2016;56(9):1746–1754. doi:10.1021/acs.jcim.6b00152
  • Schulze-Gahmen U, Echeverria I, Stjepanovic G, et al. Insights into HIV-1 proviral transcription from integrative structure and dynamics of the Tat: AFF4: P-TEFb: TAR complex. Elife. 2016;5:e15910. doi:10.7554/eLife.15910
  • Levintov L, Vashisth H. Role of conformational heterogeneity in ligand recognition by viral RNA molecules. Phys Chem Chem Phys. 2021;23(19):11211–11223. doi:10.1039/D1CP00679G
  • Malina J, Hannon MJ, Brabec V. Iron (II) supramolecular helicates interfere with the HIV-1 Tat–TAR RNA interaction critical for viral replication. Sci Rep. 2016;6(1):29674. doi:10.1038/srep29674
  • Cardo L, Nawroth I, Cail PJ, et al. Metallo supramolecular cylinders inhibit HIV-1 TAR-TAT complex formation and viral replication in cellulo. Sci Rep. 2018;8(1):13342. doi:10.1038/s41598-018-31513-3
  • Alanazi A, Ivanov A, Kumari N, et al. Targeting Tat-TAR RNA interaction for HIV-1 inhibition. Viruses. 2021;13(10):2004. doi:10.3390/v13102004
  • Selberg S, Zusinaite E, Herodes K, et al. HIV replication is increased by RNA methylation METTL3/METTL14/WTAP complex activators. ACS Omega. 2021;6(24):15957–15963. doi:10.1021/acsomega.1c01626
  • Do TN, Ippoliti E, Carloni P, et al. Counterion redistribution upon binding of a Tat-protein mimic to HIV-1 TAR RNA. J Chem Theory Comput. 2012;8(2):688–694. doi:10.1021/ct2005769
  • Crawford DW, Blakeley BD, Chen P-H, et al. An evolved RNA recognition motif that suppresses HIV-1 Tat/TAR-dependent transcription. ACS Chem Biol. 2016;11(8):2206–2215. doi:10.1021/acschembio.6b00145
  • Kumar A, Vashisth H. Conformational dynamics and energetics of viral RNA recognition by lab-evolved proteins. Phys Chem Chem Phys. 2021;23(43):24773–24779. doi:10.1039/D1CP03822B
  • Brown JD, Kharytonchyk S, Chaudry I, et al. Structural basis for transcriptional start site control of HIV-1 RNA fate. Science. 2020;368(6489):413–417. doi: 10.1126/science.aaz7959
  • Calnan BJ, Tidor B, Biancalana S, et al. Arginine-mediated RNA recognition: the arginine fork. Science. 1991;252(5009):1167–1171. doi:10.1126/science.252.5009.1167
  • Pitt SW, Majumdar A, Serganov A, et al. Argininamide binding arrests global motions in HIV-1 TAR RNA: comparison with Mg2±induced conformational stabilization. J Mol Biol. 2004;338(1):7–16. doi:10.1016/j.jmb.2004.02.031
  • Olson SW, Turner A-MW, Winston Arney J, et al. Discovery of a large-scale, cell-state-responsive allosteric switch in the 7SK RNA using DANCE-MaP. Mol Cell. 2022;82(9):1708–1723. doi:10.1016/j.molcel.2022.02.009
  • Min Kim J, Sun Choi H, Lin Seong B. The folding competence of HIV-1 Tat mediated by interaction with TAR RNA. RNA Biol. 2017;14(7):926–937. doi:10.1080/15476286.2017.1311455
  • Yan L, Belshan M. NF45 and NF90 bind HIV-1 RNA and modulate HIV gene expression. Viruses. 2016;8(2):47. doi:10.3390/v8020047
  • Rocchi C, Louvat C, Erica Miele A, et al. The HIV-1 integrase C-Terminal domain induces TAR RNA structural changes promoting Tat binding. Int J Mol Sci. 2022;23(22):13742. doi:10.3390/ijms232213742
  • Perrone R, Doria F, Butovskaya E, et al. Synthesis, binding and antiviral properties of potent core-extended naphthalene diimides targeting the HIV-1 long terminal repeat promoter G-quadruplexes. J Med Chem. 2015;58(24):9639–9652. doi:10.1021/acs.jmedchem.5b01283
  • Amrane S, Jaubert C, Bedrat A, et al. Deciphering RNA G-quadruplex function during the early steps of HIV-1 infection. Nucleic Acids Res. 2022;50(21):12328–12343. doi:10.1093/nar/gkac1030
  • Harpster C, Boyle E, Musier-Forsyth K, et al. HIV-1 genomic RNA U3 region forms a stable quadruplex-hairpin structure. Biophys Chem. 2021;272:106567. doi:10.1016/j.bpc.2021.106567
  • Battiste JL, Hongyuan Mao NSR, Ruoying Tan DM, et al. α helix-RNA major groove recognition in an HIV-1 Rev peptide-RRE RNA complex. Science. 1996;273(5281):1547–1551. doi:10.1126/science.273.5281.1547
  • Ippolito JA, Steitz TA. The structure of the HIV-1 RRE high affinity rev binding site at 1.6 Å resolution. J Mol Biol. 2000;295(4):711–717. doi:10.1006/jmbi.1999.3405
  • Hung L-W, Holbrook EL, Holbrook SR. The crystal structure of the Rev binding element of HIV-1 reveals novel base pairing and conformational variability. Proc Natl Acad Sci, USA. 2000;97(10):5107–5112. doi:10.1073/pnas.090588197
  • Gosser Y, Hermann T, Majumdar A, et al. Peptide-triggered conformational switch in HIV-1 RRE RNA complexes. Nat Struct Biol. 2001;8(2):146–150. doi:10.1038/84138
  • Zhang Q, Harada K, Cho HS, et al. Structural characterization of the complex of the Rev response element RNA with a selected peptide. Chem Biol. 2001;8(5):511–520. doi:10.1016/S1074-5521(01)00027-8
  • Jayaraman B, Crosby DC, Homer C, et al. RNA-directed remodeling of the HIV-1 protein Rev orchestrates assembly of the Rev-Rev response element complex. Elife. 2014;3:e04120. doi:10.7554/eLife.04120
  • Jackson PE, Dzhivhuho G, Rekosh D, et al. Sequence and functional variation in the HIV-1 Rev regulatory axis. Curr HIV Res. 2020;18(2):85–98. doi:10.2174/1570162X18666200106112842
  • Malim MH, Hauber J, Shu-Yun L, et al. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature. 1989;338(6212):254–257. doi:10.1038/338254a0
  • Cullen BR. Nuclear mRNA export: insights from virology. Trends Biochem Sci. 2003;28(8):419–424. doi:10.1016/S0968-0004(03)00142-7
  • Rausch JW, Le Grice SF. HIV Rev assembly on the Rev response element (RRE): a structural perspective. Viruses. 2015;7(6):3053–3075. doi:10.3390/v7062760
  • Schneeberger E-M, Halper M, Palasser M, et al. Native mass spectrometry reveals the initial binding events of HIV-1 rev to RRE stem II RNA. Nat Commun. 2020;11(1):5750. doi:10.1038/s41467-020-19144-7
  • Henderson BR, Percipalle P. Interactions between HIV Rev and nuclear import and export factors: the Rev nuclear localisation signal mediates specific binding to human importin-β. J Mol Biol. 1997;274(5):693–707. doi:10.1006/jmbi.1997.1420
  • Askjaer P, Heick Jensen T, Nilsson J, et al. The specificity of the CRM1-Rev nuclear export signal interaction is mediated by RanGTP. J Biol Chem. 1998;273(50):33414–33422. doi:10.1074/jbc.273.50.33414
  • Liu H, Pei-Wen H, Budhiraja S, et al. PACS1 is an HIV-1 cofactor that functions in Rev-mediated nuclear export of viral RNA. Virology. 2020;540:88–96. doi:10.1016/j.virol.2019.10.004
  • Kjems J, Brown M, Chang DD, et al. Structural analysis of the interaction between the human immunodeficiency virus Rev protein and the Rev response element. Proc Natl Acad Sci, USA. 1991;88(3):683–687. doi:10.1073/pnas.88.3.683
  • Mann DA, Mikaélian I, Zemmel RW, et al. A molecular rheostat: co-operative rev binding to stem I of the Rev-response element modulates human immunodeficiency virus type-1 late gene expression. J Mol Biol. 1994;241(2):193–207. doi: 10.1006/jmbi.1994.1488
  • Charpentier B, Stutz F, Rosbash M. A dynamic in vivo view of the HIV-IRev-RRE interaction. J Mol Biol. 1997;266(5):950–962. doi:10.1006/jmbi.1996.0858
  • Sherpa C, Rausch JW, Le Grice SF, et al. The HIV-1 Rev response element (RRE) adopts alternative conformations that promote different rates of virus replication. Nucleic Acids Res. 2015;43(9):4676–4686. doi:10.1093/nar/gkv313
  • Zemmel RW, Kelley AC, Karn J, et al. Flexible regions of RNA structure facilitate co-operative Rev assembly on the Rev-response element. J Mol Biol. 1996;258(5):763–777. doi:10.1006/jmbi.1996.0285
  • Peterson RD, Feigon J. Structural change in rev responsive element RNA of HIV-1 on binding rev peptide. J Mol Biol. 1996;264(5):863–877. doi:10.1006/jmbi.1996.0683
  • Chu C-C, Plangger R, Kreutz C, et al. Dynamic ensemble of HIV-1 RRE stem IIB reveals non-native conformations that disrupt the Rev-binding site. Nucleic Acids Res. 2019;47(13):7105–7117. doi:10.1093/nar/gkz498
  • Chu C-C, Liu B, Plangger R, et al. m6A minimally impacts the structure, dynamics, and Rev ARM binding properties of HIV-1 RRE stem IIB. PLoS One. 2019;14(12):e0224850. doi:10.1371/journal.pone.0224850
  • Shi Y, Han J, Zhu B, et al. Limited nucleotide changes of HIV-1 subtype B Rev response element in China affect overall Rev-RRE activity and viral replication. Front Microbiol. 2022;13: doi: 10.3389/fmicb.2022.1044676
  • Kumar A, Vashisth H. Role of mutations in differential recognition of viral RNA molecules by peptides. J Chem Inf Model. 2022;62(14):3381–3390. doi:10.1021/acs.jcim.2c00376
  • Hammond JA, Lamichhane R, Millar DP, et al. A DEAD-box helicase mediates an RNA structural transition in the HIV-1 Rev response element. J Mol Biol. 2017;429(5):697–714. doi:10.1016/j.jmb.2017.01.018
  • Dzhivhuho G, Holsey J, Honeycutt E, et al. HIV-1 Rev-RRE functional activity in primary isolates is highly dependent on minimal context-dependent changes in Rev. Sci Rep. 2022;12(1):18416. doi:10.1038/s41598-022-21714-2
  • Chen J, Umunnakwe C, Sun DQ, et al. Impact of nuclear export pathway on cytoplasmic HIV-1 RNA transport mechanism and distribution. MBio. 2020;11(6):e01578–20. doi:10.1128/mBio.01578-20
  • Levintov L, Vashisth H. Role of salt-bridging interactions in recognition of viral RNA by arginine-rich peptides. Biophys J. 2021;120(22):5060–5073. doi:10.1016/j.bpj.2021.10.007
  • Balvay L, Lopez Lastra M, Sargueil B, et al. Translational control of retroviruses. Nat Rev Microbiol. 2007;5(2):128–140. doi:10.1038/nrmicro1599
  • Tazi J, Bakkour N, Marchand V, et al. Alternative splicing: regulation of HIV-1 multiplication as a target for therapeutic action. FEBS J. 2010;277(4):867–876. doi:10.1111/j.1742-4658.2009.07522.x
  • Karn J, Martin Stoltzfus C. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med. 2012;2(2):a006916. doi:10.1101/cshperspect.a006916
  • Pelletier J, Sonenberg N. The organizing principles of eukaryotic ribosome recruitment. Annu Rev Biochem. 2019;88(1):307–335. doi: 10.1146/annurev-biochem-013118-111042
  • De Breyne S, Ohlmann T. Focus on translation initiation of the HIV-1 mRNAS. Int J Mol Sci. 2019;20(1):101. doi:10.3390/ijms20010101
  • Kieft JS. Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci. 2008;33(6):274–283. doi:10.1016/j.tibs.2008.04.007
  • Zhu J, Korostelev A, Costantino DA, et al. Crystal structures of complexes containing domains from two viral internal ribosome entry site (IRES) RNAs bound to the 70S ribosome. Proc Natl Acad Sci, USA. 2011;108(5):1839–1844. doi:10.1073/pnas.1018582108
  • Bhatt PR, Scaiola A, Loughran G, et al. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science. 2021;372(6548):1306–1313. doi: 10.1126/science.abf3546
  • Ohlmann T, Mengardi C, López-Lastra M. Translation initiation of the HIV-1 mRNA. Translation. 2014;2(2):e960242. doi:10.4161/2169074X.2014.960242
  • Smirnova VV, Terenin IM, Khutornenko AA, et al. Does HIV-1 mRNA 5ʹ-untranslated region bear an internal ribosome entry site? Biochimie. 2016;121:228–237. doi:10.1016/j.biochi.2015.12.004
  • Amorim R, Mesquita Costa S, Pereira Cavaleiro N, et al. Edson Elias da Silva, and Luciana Jesus da Costa. HIV-1 transcripts use IRES-initiation under conditions where cap-dependent translation is restricted by poliovirus 2A protease. PLoS One. 2014;9(2):e88619. doi:10.1371/journal.pone.0088619
  • Dugre-Brisson S, Elvira G, Boulay K, et al. Interaction of Staufen1 with the 5ʹ end of mRNA facilitates translation of these RNAs. Nucleic Acids Res. 2005;33(15):4797–4812. doi:10.1093/nar/gki794
  • Ramos H, Monette A, Niu M, et al. The double-stranded RNA-binding protein, Staufen1, is an IRES-transacting factor regulating HIV-1 cap-independent translation initiation. Nucleic Acids Res. 2022;50(1):411–429. doi:10.1093/nar/gkab1188
  • Guerrero S, Batisse J, Libre C, et al. HIV-1 replication and the cellular eukaryotic translation apparatus. Viruses. 2015;7(1):199–218. doi:10.3390/v7010199
  • Ketteler R. On programmed ribosomal frameshifting: the alternative proteomes. Front Genet. 2012;3:242. doi:10.3389/fgene.2012.00242
  • Ritchie DB, Cappellano TR, Tittle C, et al. Conformational dynamics of the frameshift stimulatory structure in HIV-1. RNA. 2017;23(9):1376–1384. doi:10.1261/rna.061655.117
  • Garcia-Miranda P, Becker JT, Benner BE, et al. Stability of HIV frameshift site RNA correlates with frameshift efficiency and decreased virus infectivity. J Virol. 2016;90(15):6906–6917. doi:10.1128/JVI.00149-16
  • Hilimire TA, Chamberlain JM, Anokhina V, et al. HIV-1 frameshift RNA-targeted triazoles inhibit propagation of replication-competent and multi-drug-resistant HIV in human cells. ACS Chem Biol. 2017;12(6):1674–1682. doi:10.1021/acschembio.7b00052
  • Takata MA, Gonçalves-Carneiro D, Zang TM, et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature. 2017;550(7674):124–127. doi:10.1038/nature24039
  • Antzin-Anduetza I, Mahiet C, Granger LA, et al. Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral replication. Retrovirology. 2017;14(1):1–18. doi: 10.1186/s12977-017-0374-1
  • Xue G, Braczyk K, Gonçalves-Carneiro D, et al. Poly(adp-ribose) potentiates ZAP antiviral activity. PLOS Pathog. 2022;18(2):e1009202. doi: 10.1371/journal.ppat.1009202
  • Kennedy EM, Bogerd HP, Kornepati AV, et al. Posttranscriptional m6A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe. 2016;19(5):675–685. doi:10.1016/j.chom.2016.04.002
  • Courtney DG, Tsai K, Bogerd HP, et al. Epitranscriptomic addition of m5C to HIV-1 transcripts regulates viral gene expression. Cell Host Microbe. 2019;26(2):217–227. doi:10.1016/j.chom.2019.07.005
  • Ringeard M, Marchand V, Decroly E, et al. FTSJ3 is an RNA 2ʹ-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature. 2019;565(7740):500–504. doi:10.1038/s41586-018-0841-4
  • Tirumuru N, Simen Zhao B, Wuxun L, et al. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. Elife. 2016;5:e15528. doi:10.7554/eLife.15528
  • Šimonová A, Svojanovská B, Trylčová J, et al. LC/MS analysis and deep sequencing reveal the accurate RNA composition in the HIV-1 virion. Sci Rep. 2019;9(1):8697. doi: 10.1038/s41598-019-45079-1
  • Tsai K, Ayyappan Jaguva Vasudevan A, Martinez Campos C, et al. Acetylation of cytidine residues boosts HIV-1 gene expression by increasing viral RNA stability. Cell Host Microbe. 2020;28(2):306–312. doi:10.1016/j.chom.2020.05.011
  • Keane SC, Heng X, Kun L, et al. Structure of the HIV-1 RNA packaging signal. Science. 2015;348(6237):917–921. doi: 10.1126/science.aaa9266
  • Greatorex J, Gallego J, Varani G, et al. Structure and stability of wild-type and mutant RNA internal loops from the SL-1 domain of the HIV-1 packaging signal. J Mol Biol. 2002;322(3):543–557. doi:10.1016/S0022-2836(02)00776-3
  • Lawrence DC, Stover CC, Noznitsky J, et al. Structure of the intact stem and bulge of HIV-1 ψ-RNA stem-loop SL1. J Mol Biol. 2003;326(2):529–542. doi:10.1016/S0022-2836(02)01305-0
  • Yuan Y, Kerwood DJ, Paoletti AC, et al. Stem of SL1 RNA in HIV-1: structure and nucleocapsid protein binding for a 1× 3 internal loop. Biochemistry. 2003;42(18):5259–5269. doi:10.1021/bi034084a
  • Baba S, Takahashi K-I, Noguchi S, et al. Solution RNA structures of the HIV-1 dimerization initiation site in the kissing-loop and extended-duplex dimers. J Biochem. 2005;138(5):583–592. doi:10.1093/jb/mvi158
  • Girard F, Barbault F, Gouyette C, et al. Dimer initiation sequence of HIV-1Lai genomic RNA: NMR solution structure of the extended duplex. J Biomol Struct Dyn. 1999;16(6):1145–1157. doi:10.1080/07391102.1999.10508323
  • Ennifar E, Yusupov M, Walter P, et al. The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. Structure. 1999;7(11):1439–1449. doi:10.1016/S0969-2126(00)80033-7
  • Ennifar E, Walter P, Dumas P. A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. Nucleic Acids Res. 2003;31(10):2671–2682. doi:10.1093/nar/gkg350
  • Freisz S, Lang K, Micura R, et al. Binding of aminoglycoside antibiotics to the duplex form of the HIV-1 genomic RNA dimerization initiation site. Angew Chem Int Ed Engl. 2008;47(22):4110–4113. doi:10.1002/anie.200800726
  • Ulyanov NB, Mujeeb A, Zhihua D, et al. NMR structure of the full-length linear dimer of stem-loop-1 RNA in the HIV-1 dimer initiation site. J Biol Chem. 2006;281(23):16168–16177. doi:10.1074/jbc.M601711200
  • Ennifar E, Walter P, Dumas P. Cation-dependent cleavage of the duplex form of the subtype-B HIV-1 RNA dimerization initiation site. Nucleic Acids Res. 2010;38(17):5807–5816. doi:10.1093/nar/gkq344
  • Zhang K, Keane SC, Zhaoming S, et al. Structure of the 30 kDa HIV-1 RNA dimerization signal by a hybrid cryo-EM, NMR, and molecular dynamics approach. Structure. 2018;26(3):490–498. doi:10.1016/j.str.2018.01.001
  • Mujeeb A, Clever JL, Billeci TM, et al. Structure of the dimer a initiation complex of HIV-1 genomic RNA. Nat Struct Mol Biol. 1998;5(6):432–436. doi:10.1038/nsb0698-432
  • Ennifar E, Walter P, Ehresmann B, et al. Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. Nat Struct Biol. 2001;8(12):1064–1068. doi:10.1038/nsb727
  • Barbault F, Huynh-Dinh T, Paoletti J, et al. A new peculiar DNA structure: NMR solution structure of a DNA kissing complex. J Biomol Struct Dyn. 2002;19(4):649–658. doi:10.1080/07391102.2002.10506771
  • Kieken F, Paquet F, Brule F, et al. A new NMR solution structure of the SL1 HIV-1 lai loop–loop dimer. Nucleic Acids Res. 2006;34(1):343–352. doi:10.1093/nar/gkj427
  • Ennifar E, Dumas P. Polymorphism of bulged-out residues in HIV-1 RNA DIS kissing complex and structure comparison with solution studies. J Mol Biol. 2006;356(3):771–782. doi:10.1016/j.jmb.2005.12.022
  • Ennifar E, Paillart J-C, Bodlenner A, et al. Targeting the dimerization initiation site of HIV-1 RNA with aminoglycosides: from crystal to cell. Nucleic Acids Res. 2006;34(8):2328–2339. doi:10.1093/nar/gkl317
  • Kieken F, Arnoult E, Barbault F, et al. HIV-1Lai genomic RNA: combined used of NMR and molecular dynamics simulation for studying the structure and internal dynamics of a mutated SL1 hairpin. European Biophys J. 2002;31(7):521–531. doi: 10.1007/s00249-002-0251-1
  • Amarasinghe GK, De Guzman RN, Turner RB, et al. NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the Ψ-RNA packaging signal. Implications for genome recognition. J Mol Biol. 2000;301(2):491–511. doi:10.1006/jmbi.2000.3979
  • De Guzman RN, Zheng Rong W, Stalling CC, et al. Structure of the HIV-1 nucleocapsid protein bound to the SL3 Ψ-RNA recognition element. Science. 1998;279(5349):384–388. doi:10.1126/science.279.5349.384
  • Comas-Garcia M, Davis SR, Rein A. On the selective packaging of genomic RNA by HIV-1. Viruses. 2016;8(9):246. doi:10.3390/v8090246
  • Liqing Y, Gribling-Burrer A-S, Bohn P, et al. Short-and long-range interactions in the HIV-1 5ʹ UTR regulate genome dimerization and packaging. Nat Struct Mol Biol. 2022;29(4):306–319. doi:10.1038/s41594-022-00746-2
  • Vamva E, Griffiths A, Vink CA, et al. A novel role for gag as a cis-acting element regulating RNA structure, dimerization and packaging in HIV-1 lentiviral vectors. Nucleic Acids Res. 2022;50(1):430–448. doi:10.1093/nar/gkab1206
  • D’Souza AR, Jayaraman D, Long Z, et al. HIV-1 packaging visualised by in-gel SHAPE. Viruses. 2021;13(12):2389. doi:10.3390/v13122389
  • Blakemore RJ, Burnett C, Swanson C, et al. Stability and conformation of the dimeric HIV-1 genomic RNA 5ʹ UTR. Biophys J. 2021;120(21):4874–4890. doi:10.1016/j.bpj.2021.09.017
  • Skripkin E, Paillart J-C, Marquet R, et al. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc Natl Acad Sci, USA. 1994;91(11):4945–4949. doi:10.1073/pnas.91.11.4945
  • Ganser LR, Al-Hashimi HM. HIV-1 leader RNA dimeric interface revealed by NMR. Proc Natl Acad Sci, USA. 2016;113(47):13263–13265. doi:10.1073/pnas.1615789113
  • Keane SC, Van V, Frank HM, et al. NMR detection of intermolecular interaction sites in the dimeric 5ʹ-leader of the HIV-1 genome. Proc Natl Acad Sci, USA. 2016;113(46):13033–13038. doi:10.1073/pnas.1614785113
  • Mujeeb A, Parslow TG, Zarrinpar A, et al. NMR structure of the mature dimer initiation complex of HIV-1 genomic RNA. FEBS Lett. 1999;458(3):387–392. doi:10.1016/S0014-5793(99)01183-7
  • Brigham BS, Kitzrow JP, Reyes J-PC, et al. Intrinsic conformational dynamics of the HIV-1 genomic RNA 5ʹ UTR. Proc Natl Acad Sci, USA. 2019;116(21):10372–10381. doi:10.1073/pnas.1902271116
  • Nikolaitchik OA, Somoulay X, Rawson JM, et al. Unpaired guanosines in the 5′ untranslated region of HIV-1 RNA act synergistically to mediate genome packaging. J Virol. 2020;94(21):e00439–20. doi:10.1128/JVI.00439-20
  • Berkhout B, Van Wamel JL. The leader of the HIV-1 RNA genome forms a compactly folded tertiary structure. RNA. 2000;6(2):282–295. doi:10.1017/S1355838200991684
  • Huthoff H, Berkhout BEN. Two alternating structures of the HIV-1 leader RNA. RNA. 2001;7(1):143–157. doi:10.1017/S1355838201001881
  • Mailler E, Bernacchi S, Marquet R, et al. The life-cycle of the HIV-1 Gag–RNA complex. Viruses. 2016;8(9):248. doi:10.3390/v8090248
  • Paillart J-C, Dettenhofer M, Xiao-Fang Y, et al. First snapshots of the HIV-1 RNA structure in infected cells and in virions. J Biol Chem. 2004;279(46):48397–48403. doi:10.1074/jbc.M408294200
  • Ding P, Kharytonchyk S, Kuo N, et al. 5ʹ-Cap sequestration is an essential determinant of HIV-1 genome packaging. Proc Natl Acad Sci, USA. 2021;118(37):e2112475118. doi:10.1073/pnas.2112475118
  • Kroupa T, Datta SA, Rein A. Distinct contributions of different domains within the HIV-1 Gag polyprotein to specific and nonspecific interactions with RNA. Viruses. 2020;12(4):394. doi:10.3390/v12040394
  • Comas-Garcia M, Datta SA, Baker L, et al. Dissection of specific binding of HIV-1 Gag to the ’packaging signal’ in viral RNA. Elife. 2017;6:e27055. doi:10.7554/eLife.27055
  • Rye-McCurdy T, Olson ED, Liu S, et al. Functional equivalence of retroviral MA domains in facilitating psi RNA binding specificity by Gag. Viruses. 2016;8(9):256. doi:10.3390/v8090256
  • Kharytonchyk S, Brown JD, Stilger K, et al. Influence of gag and RRE sequences on HIV-1 RNA packaging signal structure and function. J Mol Biol. 2018;430(14):2066–2079. doi:10.1016/j.jmb.2018.05.029
  • Boeras I, Seufzer B, Brady S, et al. The basal translation rate of authentic HIV-1 RNA is regulated by 5 ’UTR nt-pairings at junction of R and U5. Sci Rep. 2017;7(1):6902. doi:10.1038/s41598-017-06883-9
  • Ferrer M, Clerté C, Chamontin C, et al. Imaging HIV-1 RNA dimerization in cells by multicolor super-resolution and fluctuation microscopies. Nucleic Acids Res. 2016;44(16):7922–7934. doi:10.1093/nar/gkw511
  • Chen J, Abdul Rahman S, Nikolaitchik OA, et al. HIV-1 RNA genome dimerizes on the plasma membrane in the presence of Gag protein. Proc Natl Acad Sci, USA. 2016;113(2):E201–E208. doi:10.1073/pnas.1518572113
  • Carlson L-A, Bai Y, Keane SC, et al. Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies. Elife. 2016;5:e14663. doi:10.7554/eLife.14663
  • Duchon A, Santos S, Chen J, et al. Plasma membrane anchoring and Gag: gag multimerization on viral RNA are critical properties of HIV-1 Gag required to mediate efficient genome packaging. MBio. 2021;12(6):e03254–21. doi:10.1128/mbio.03254-21
  • Yang Y, Qu N, Tan J, et al. Roles of Gag-RNA interactions in HIV-1 virus assembly deciphered by single-molecule localization microscopy. Proc Natl Acad Sci, USA. 2018;115(26):6721–6726. doi:10.1073/pnas.1805728115
  • Chen S, Jun X, Mingyue Liu AR, et al. Investigation of HIV-1 Gag binding with RNAs and lipids using atomic force microscopy. PLoS One. 2020;15(2):e0228036. doi:10.1371/journal.pone.0228036
  • Bernacchi S, Abd El-Wahab EW, Dubois N, et al. HIV-1 Pr55Gag binds genomic and spliced RNAs with different affinity and stoichiometry. RNA Biol. 2017;14(1):90–103. doi:10.1080/15476286.2016.1256533
  • Gilmer O, Mailler E, Paillart J-C, et al. Structural maturation of the HIV-1 RNA 5ʹ untranslated region by Pr55Gag and its maturation products. RNA Biol. 2022;19(1):191–205. doi:10.1080/15476286.2021.2021677
  • Tanwar HS, Khoo KK, Garvey M, et al. The thermodynamics of Pr55Gag-RNA interaction regulate the assembly of HIV. PLOS Pathog. 2017;13(2):e1006221. doi:10.1371/journal.ppat.1006221
  • Sakuragi S, Yokoyama M, Shioda T, et al. SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA. Retrovirology. 2016;13(1):1–13. doi: 10.1186/s12977-016-0310-9
  • Freed EO. HIV-1 assembly, release and maturation. Nat Rev Microbiol. 2015;13(8):484–496. doi:10.1038/nrmicro3490
  • Kessl JJ, Kutluay SB, Townsend D, et al. HIV-1 integrase binds the viral RNA genome and is essential during virion morphogenesis. Cell. 2016;166(5):1257–1268. doi: 10.1016/j.cell.2016.07.044
  • Elliott JL, Eschbach JE, Koneru PC, et al. Integrase-RNA interactions underscore the critical role of integrase in HIV-1 virion morphogenesis. Elife. 2020;9:e54311. doi:10.7554/eLife.54311
  • Shema Mugisha C, Dinh T, Kumar A, et al. Emergence of compensatory mutations reveals the importance of electrostatic interactions between HIV-1 integrase and genomic RNA. MBio. 2022;13(5):e00431–22. doi:10.1128/mbio.00431-22
  • Liu S, Koneru PC, Wen L, et al. HIV-1 integrase binding to genomic RNA 5ʹ-UTR induces local structural changes in vitro and in virio. Retrovirology. 2021;18:1–16. doi:10.1186/s12977-021-00582-0
  • Wang X-W, Liu C-X, Chen L-L, et al. RNA structure probing uncovers RNA structure-dependent biological functions. Nat Chem Biol. 2021;17(7):755–766. doi:10.1038/s41589-021-00805-7
  • Ganser LR, Lee J, Rangadurai A, et al. High-performance virtual screening by targeting a high-resolution RNA dynamic ensemble. Nat Struct Mol Biol. 2018;25(5):425–434. doi:10.1038/s41594-018-0062-4
  • Leulliot N, Varani G. Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry. 2001;40(27):7947–7956. doi:10.1021/bi010680y
  • Dethoff EA, Chugh J, Mustoe AM, et al. Functional complexity and regulation through RNA dynamics. Nature. 2012;482(7385):322–330. doi:10.1038/nature10885
  • Halder S, Bhattacharyya D. RNA structure and dynamics: a base pairing perspective. Prog Biophys Mol Biol. 2013;113(2):264–283. doi:10.1016/j.pbiomolbio.2013.07.003
  • Mustoe AM, Brooks CL, Al-Hashimi HM. Hierarchy of RNA functional dynamics. Annu Rev Biochem. 2014;83(1):441–466. doi: 10.1146/annurev-biochem-060713-035524
  • Merriman DK, Xue Y, Yang S, et al. Shortening the HIV-1 TAR RNA bulge by a single nucleotide preserves motional modes over a broad range of time scales. Biochemistry. 2016;55(32):4445–4456. doi:10.1021/acs.biochem.6b00285
  • Shi H, Rangadurai A, Abou Assi H, et al. Rapid and accurate determination of atomistic RNA dynamic ensemble models using NMR and structure prediction. Nat Commun. 2020;11(1):5531. doi:10.1038/s41467-020-19371-y
  • Mustoe AM, Al-Hashimi HM, Brooks CL III. Coarse grained models reveal essential contributions of topological constraints to the conformational free energy of RNA bulges. J Phys Chem B. 2014;118(10):2615–2627. doi:10.1021/jp411478x
  • Pyle A. Metal ions in the structure and function of RNA. J Biol Inorg Chem. 2002;7(7–8):679–690. doi: 10.1007/s00775-002-0387-6
  • Marušič M, Toplishek M, Plavec J. NMR of RNA-Structure and interactions. Curr Opin Struct Biol. 2023;79:102532. doi:10.1016/j.sbi.2023.102532
  • Bing L, Cao Y, Westhof E, et al. Advances in RNA 3D structure modeling using experimental data. Front Genet. 2020;11:574485. doi:10.3389/fgene.2020.574485
  • Ganser LR, Chu C-C, Bogerd HP, et al. Probing RNA conformational equilibria within the functional cellular context. Cell Rep. 2020;30(8):2472–2480. doi:10.1016/j.celrep.2020.02.004
  • Clay MC, Ganser LR, Merriman DK, et al. Resolving sugar puckers in RNA excited states exposes slow modes of repuckering dynamics. Nucleic Acids Res. 2017;45(14):e134–e134. doi:10.1093/nar/gkx525
  • Andreas Juen M, Hermann Wunderlich C, Nußbaumer F, et al. Excited states of nucleic acids probed by proton relaxation dispersion NMR spectroscopy. Angew Chem. 2016;128(39):12187–12191. doi:10.1002/ange.201605870
  • Tian S, Cordero P, Kladwang W, et al. High-throughput mutate-map-rescue evaluates SHAPE-directed RNA structure and uncovers excited states. RNA. 2014;20(11):1815–1826. doi:10.1261/rna.044321.114
  • Abou Assi H, Rangadurai AK, Shi H, et al. 2ʹ-O-Methylation can increase the abundance and lifetime of alternative RNA conformational states. Nucleic Acids Res. 2020;48(21):12365–12379. doi:10.1093/nar/gkaa928
  • Shi X, Walker P, Harbury PB, et al. Determination of the conformational ensemble of the TAR RNA by X-ray scattering interferometry. Nucleic Acids Res. 2017;45(8):e64–e64. doi:10.1093/nar/gkw1352
  • Walder R, Van Patten WJ, Ritchie DB, et al. High-precision single-molecule characterization of the folding of an HIV RNA hairpin by atomic force microscopy. Nano Lett. 2018;18(10):6318–6325. doi:10.1021/acs.nanolett.8b02597
  • Hermann T, Patel DJ. RNA bulges as architectural and recognition motifs. Structure. 2000;8(3):R47–R54. doi:10.1016/S0969-2126(00)00110-6
  • Batey RT, Rambo RP, Doudna JA. Tertiary motifs in RNA structure and folding. Angew Chem Int Ed Engl. 1999;38(16):2326–2343. doi:10.1002/(SICI)1521-3773(19990816)38:16<2326:AID-ANIE2326>3.0.CO;2-3
  • Merriman DK, Yuan J, Shi H, et al. Increasing the length of poly-pyrimidine bulges broadens RNA conformational ensembles with minimal impact on stacking energetics. RNA. 2018;24(10):1363–1376. doi:10.1261/rna.066258.118
  • Sbicca L, López González A, Gresika A, et al. Exploring the impact of the side-chain length on peptide/RNA binding events. Phys Chem Chem Phys. 2017;19(28):18452–18460. doi:10.1039/C7CP03726K
  • Andrałojć W, Ravera E, Salmon L, et al. Inter-helical conformational preferences of HIV-1 TAR-RNA from maximum occurrence analysis of NMR data and molecular dynamics simulations. Phys Chem Chem Phys. 2016;18(8):5743–5752. doi:10.1039/C5CP03993B
  • Bennasser Y, Shu-Yun L, Lung Yeung M, et al. HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirology. 2004;1(1):1–5. doi:10.1186/1742-4690-1-43
  • Harwig A, Jongejan A, van Kampen AH, et al. Tat-dependent production of an HIV-1 TAR-encoded miRNA-like small RNA. Nucleic Acids Res. 2016;44(9):4340–4353. doi:10.1093/nar/gkw167
  • Kelly ML, Chu C-C, Shi H, et al. Understanding the characteristics of nonspecific binding of drug-like compounds to canonical stem–loop RNAs and their implications for functional cellular assays. RNA. 2021;27(1):12–26. doi:10.1261/rna.076257.120
  • Eubanks CS, Forte JE, Kapral GJ, et al. Small molecule-based pattern recognition to classify RNA structure. J Am Chem Soc. 2017;139(1):409–416. doi:10.1021/jacs.6b11087
  • Bagnolini G, Luu TB, Hargrove AE. Recognizing the power of machine learning and other computational methods to accelerate progress in small molecule targeting of RNA. RNA. 2023;29(4):473–488. doi:10.1261/rna.079497.122
  • Patwardhan NN, Ganser LR, Kapral GJ, et al. Amiloride as a new RNA-binding scaffold with activity against HIV-1 TAR. MedChemcomm. 2017;8(5):1022–1036. doi:10.1039/C6MD00729E
  • Patwardhan NN, Cai Z, Umuhire Juru A, et al. Driving factors in amiloride recognition of HIV RNA targets. Org Biomol Chem. 2019;17(42):9313–9320. doi:10.1039/C9OB01702J
  • Alexander D MacKerell NB Jr, Foloppe N, Foloppe N. Development and current status of the CHARMM force field for nucleic acids. Biopolymers. 2000;56(4):257–265. doi:10.1002/1097-0282(2000)56:4<257:AID-BIP10029>3.0.CO;2-W
  • Denning EJ, Deva Priyakumar U, Nilsson L, et al. Impact of 2ʹ-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-atom additive force field for RNA. J Comput Chem. 2011;32(9):1929–1943. doi:10.1002/jcc.21777
  • Cornell WD, Cieplak P, Bayly CI, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117(19):5179–5197. doi:10.1021/ja00124a002
  • Cheatham TE III, Cieplak P, Kollman PA. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J Biomol Struct Dyn. 1999;16(4):845–862. doi:10.1080/07391102.1999.10508297
  • Pérez A, Marchán I, Svozil D, et al. Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys J. 2007;92(11):3817–3829. doi:10.1529/biophysj.106.097782
  • Banás P, Hollas D, Zgarbová M, et al. Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins. J Chem Theory Comput. 2010;6(12):3836–3849. doi:10.1021/ct100481h
  • Zgarbová M, Otyepka M, Sponer J, et al. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J Chem Theory Comput. 2011;7(9):2886–2902. doi:10.1021/ct200162x
  • Aytenfisu AH, Spasic A, Grossfield A, et al. Revised RNA dihedral parameters for the amber force field improve RNA molecular dynamics. J Chem Theory Comput. 2017;13(2):900–915. doi:10.1021/acs.jctc.6b00870
  • Suresh G, Deva Priyakumar U. Atomistic details of the molecular recognition of DNA-RNA hybrid duplex by ribonuclease H enzyme. J Chem Sci. 2015;127(10):1701–1713. doi: 10.1007/s12039-015-0942-7
  • Figiel M, Krepl M, Poznański J, et al. Coordination between the polymerase and RNase H activity of HIV-1 reverse transcriptase. Nucleic Acids Res. 2017;45(6):3341–3352. doi:10.1093/nar/gkx004
  • Figiel M, Krepl M, Park S, et al. Mechanism of polypurine tract primer generation by HIV-1 reverse transcriptase. J Biol Chem. 2018;293(1):191–202. doi:10.1074/jbc.M117.798256
  • Salmon L, Giambasu GM, Nikolova EN, et al. Modulating RNA alignment using directional dynamic kinks: application in determining an atomic-resolution ensemble for a hairpin using NMR residual dipolar couplings. J Am Chem Soc. 2015;137(40):12954–12965. doi:10.1021/jacs.5b07229
  • Réblová K, Spackova N, Sponer JE, et al. Molecular dynamics simulations of RNA kissing-loop motifs reveal structural dynamics and formation of cation-binding pockets. Nucleic Acids Res. 2003;31(23):6942–6952. doi:10.1093/nar/gkg880
  • Réblová K, Fadrná E, Sarzynska J, et al. Conformations of flanking bases in HIV-1 RNA DIS kissing complexes studied by molecular dynamics. Biophys J. 2007;93(11):3932–3949. doi:10.1529/biophysj.107.110056
  • Havrila M, Zgarbová M, Jurecka P, et al. Microsecond-scale MD simulations of HIV-1 DIS kissing-loop complexes predict bulged-in conformation of the bulged bases and reveal interesting differences between available variants of the AMBER RNA force fields. J Phys Chem B. 2015;119(49):15176–15190. doi:10.1021/acs.jpcb.5b08876
  • Michael LA, Chenault JA, Miller BR III, et al. Water, shape recognition, salt bridges, and cation–pi interactions differentiate peptide recognition of the HIV Rev-responsive element. J Mol Biol. 2009;392(3):774–786. doi:10.1016/j.jmb.2009.07.047
  • Nifosì R, Reyes CM, Kollman PA. Molecular dynamics studies of the HIV-1 TAR and its complex with argininamide. Nucleic Acids Res. 2000;28(24):4944–4955. doi:10.1093/nar/28.24.4944
  • Reyes CM, Nifosì R, Frankel AD, et al. Molecular dynamics and binding specificity analysis of the bovine immunodeficiency virus biv tat-tar complex. Biophys J. 2001;80(6):2833–2842. doi:10.1016/S0006-3495(01)76250-9
  • Yuguang M, Stock G. Conformational dynamics of RNA-peptide binding: a molecular dynamics simulation study. Biophys J. 2006;90(2):391–399. doi:10.1529/biophysj.105.069559
  • Frank AT, Stelzer AC, Al-Hashimi HM, et al. Constructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition. Nucleic Acids Res. 2009;37(11):3670–3679. doi:10.1093/nar/gkp156
  • Mori M, Dietrich U, Manetti F, et al. Molecular dynamics and DFT study on HIV-1 nucleocapsid protein-7 in complex with viral genome. J Chem Inf Model. 2010;50(4):638–650. doi:10.1021/ci100070m
  • Musselman C, Zhang Q, Al-Hashimi H, et al. Referencing strategy for the direct comparison of nuclear magnetic resonance and molecular dynamics motional parameters in RNA. J Phys Chem B. 2010;114(2):929–939. doi:10.1021/jp905286h
  • Sethaphong L, Singh A, Marlowe AE, et al. The sequence of HIV-1 TAR RNA helix controls cationic distribution. J Phys Chem C. 2010;114(12):5506–5512. doi:10.1021/jp906147q
  • Salmon L, Bascom G, Andricioaei I, et al. A general method for constructing atomic-resolution RNA ensembles using NMR residual dipolar couplings: the basis for interhelical motions revealed. J Am Chem Soc. 2013;135(14):5457–5466. doi:10.1021/ja400920w
  • Musiani F, Rossetti G, Capece L, et al. Molecular dynamics simulations identify time scale of conformational changes responsible for conformational selection in molecular recognition of HIV-1 transactivation responsive RNA. J Am Chem Soc. 2014;136(44):15631–15637. doi:10.1021/ja507812v
  • Do TN, Carloni P, Varani G, et al. RNA/Peptide binding driven by electrostatics — insight from bidirectional pulling simulations. J Chem Theory Comput. 2013;9(3):1720–1730. doi:10.1021/ct3009914
  • Chun Hua L, Cheng Zuo Z, Ji Guo S, et al. The interactions and recognition of cyclic peptide mimetics of Tat with HIV-1 TAR RNA: a molecular dynamics simulation study. J Biomol Struct Dyn. 2013;31(3):276–287. doi:10.1080/07391102.2012.698248
  • Ronsard L, Rai T, Rai D, et al. In silico analyses of subtype specific HIV-1 Tat-TAR RNA interaction reveals the structural determinants for viral activity. Front Microbiol. 2017;8:1467. doi:10.3389/fmicb.2017.01467
  • Ronsard L, Ganguli N, Singh VK, et al. Impact of genetic variations in HIV-1 Tat on LTR-mediated transcription via TAR RNA interaction. Front Microbiol. 2017;8:706. doi:10.3389/fmicb.2017.00706
  • Zhang B-G, Qiu H-H, Jiang J, et al. 3D structure stability of the HIV-1 TAR RNA in ion solutions: a coarse-grained model study. J Chem Phys. 2019;151(16):165101. doi:10.1063/1.5126128
  • Levintov L, Vashisth H. Ligand recognition in viral RNA necessitates rare conformational transitions. J Phys Chem Lett. 2020;11(14):5426–5432. doi:10.1021/acs.jpclett.0c01390
  • Henning-Knechtel A, Thirumalai D, Kirmizialtin S. Differences in ion-RNA binding modes due to charge density variations explain the stability of RNA in monovalent salts. Sci Adv. 2022;8(29):eabo1190. doi:10.1126/sciadv.abo1190
  • Sponer J, Bussi G, Krepl M, et al. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem Rev. 2018;118(8):4177–4338. doi:10.1021/acs.chemrev.7b00427
  • Duss O, Lukavsky PJ, H-T Allain F. Isotope labeling and segmental labeling of larger RNAs for NMR structural studies. Adv Exp Med Biol. 2012;992:121–144.
  • Andrew McCammon J, Gelin BR, Karplus M. Dynamics of folded proteins. Nature. 1977;267(5612):585–590. doi:10.1038/267585a0
  • Adcock SA, Andrew McCammon J. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev. 2006;106(5):1589–1615. doi:10.1021/cr040426m
  • Karplus M, Andrew McCammon J. Molecular dynamics simulations of biomolecules. Nat Struct Biol. 2002;9(9):646–652. doi:10.1038/nsb0902-646
  • Paul S, Nair NN, Vashisth H. Phase space and collective variable based simulation methods for studies of rare events. Mol Simul. 2019;45(14–15):1273–1284. doi:10.1080/08927022.2019.1634268
  • Vashisth H, Skiniotis G, Brooks CL III. Collective variable approaches for single molecule flexible fitting and enhanced sampling. Chem Rev. 2014;114(6):3353–3365. doi:10.1021/cr4005988
  • Iwazaki T, Xianglan L, Harada K. Evolvability of the mode of peptide binding by an RNA. RNA. 2005;11(9):1364–1373. doi:10.1261/rna.2560905
  • Xiaojun X, Jin L, Xie L, et al. Landscape zooming toward the prediction of RNA cotranscriptional folding. J Chem Theory Comput. 2022;18(3):2002–2015. doi:10.1021/acs.jctc.1c01233
  • Jurich CP, Brivanlou A, Rouskin S, et al. Web-based platform for analysis of RNA folding from high throughput chemical probing data. Nucleic Acids Res. 2022;50(W1):W266–W271. doi:10.1093/nar/gkac435
  • Xie J, Frank AT. Mining for ligandable cavities in RNA. ACS Med Chem Lett. 2021;12(6):928–934. doi:10.1021/acsmedchemlett.1c00068
  • Kmiecik S, Gront D, Kolinski M, et al. Coarse-grained protein models and their applications. Chem Rev. 2016;116(14):7898–7936. doi:10.1021/acs.chemrev.6b00163
  • Goodsell DS, Jewett A, Olson AJ, et al. Integrative modeling of the HIV-1 ribonucleoprotein complex. PLoS Comput Biol. 2019;15(6):e1007150. doi:10.1371/journal.pcbi.1007150