2,150
Views
0
CrossRef citations to date
0
Altmetric
Review

mRNA nuclear export: how mRNA identity features distinguish functional RNAs from junk transcripts

ORCID Icon, &
Pages 1-12 | Accepted 05 Dec 2023, Published online: 13 Dec 2023

References

  • Martin W, Koonin EV. Introns and the origin of nucleus-cytosol compartmentalization. Nature. 2006;440(7080):41–45. doi: 10.1038/nature04531
  • López-García P, Moreira D. Selective forces for the origin of the eukaryotic nucleus. BioEssays. 2006;28(5):525–533. doi: 10.1002/bies.20413
  • Palazzo AF, Akef A. Nuclear export as a key arbiter of “mRNA identity” in eukaryotes. Biochim Biophys Acta. 2012;1819(6):566–577. doi: 10.1016/j.bbagrm.2011.12.012
  • Koonin EV. Splendor and misery of adaptation, or the importance of neutral null for understanding evolution. BMC Biol. 2016;14(1):114. doi: 10.1186/s12915-016-0338-2
  • Palazzo AF, Lee ES. Sequence determinants for nuclear retention and cytoplasmic export of mRNAs and lncRNAs. Front Genet. 2018;9:440. doi: 10.3389/fgene.2018.00440
  • Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk? Front Genet. 2015;6:2. doi: 10.3389/fgene.2015.00002
  • Rigau M, Juan D, Valencia A, et al. Intronic CNVs and gene expression variation in human populations. PLoS Genet. 2019;15(1):e1007902. doi: 10.1371/journal.pgen.1007902
  • Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–108. doi: 10.1038/nature11233
  • Palazzo AF, Gregory TR . The case for junk DNA. PLoS Genet. 2014;10(5):e1004351. doi: 10.1371/journal.pgen.1004351
  • Ponting C. Biological function in the twilight zone of sequence conservation. BMC Biol. 2017;15(1):71. doi: 10.1186/s12915-017-0411-5
  • Ponting CP, Haerty W. Genome-wide analysis of human long noncoding RNAs: a provocative review. Ann Rev Genomics Hum Genet. 2022;23(1):153–172. doi: 10.1146/annurev-genom-112921-123710
  • Palazzo AF, Koonin EV. Functional long non-coding RNAs evolve from junk transcripts. Cell. 2020;183(5):1–12. doi: 10.1016/j.cell.2020.09.047
  • Lee H, Zhang Z, Krause HM. Long noncoding RNAs and repetitive elements: junk or intimate evolutionary partners? Trends Genet. 2019;35(12):892–902. doi: 10.1016/j.tig.2019.09.006
  • Mattick JS, Dinger ME. The extent of functionality in the human genome. Hugo J. 2013;7(1):2. doi: 10.1186/1877-6566-7-2
  • López-García P, Moreira D. Open questions on the origin of eukaryotes. Trends Ecol Evol. 2015;30(11):697–708. doi: 10.1016/j.tree.2015.09.005
  • Sharp PA. Five easy pieces. Science. 1991;254(5032):663. doi: 10.1126/science.1948046
  • Smathers CM, Robart AR. The mechanism of splicing as told by group II introns: ancestors of the spliceosome. Biochim Biophys Acta Gene Regul Mech. 2019;1862(11):194390. doi: 10.1016/j.bbagrm.2019.06.001
  • Vosseberg J, Stolker D, von der Dunk SHA, et al. Integrating phylogenetics with intron positions illuminates the origin of the complex spliceosome. Mol Biol Evol. 2023;40(1):msad011. doi: 10.1093/molbev/msad011
  • Rogozin IB, Carmel L, Csuros M, et al. Origin and evolution of spliceosomal introns. Biol Direct. 2012;7(1):11. doi: 10.1186/1745-6150-7-11
  • Field MC, Rout MP. Coatomer in the universe of cellular complexity. Mol Biol Cell. 2022;33(14):e8. doi: 10.1091/mbc.E19-01-0012
  • Luo MJ, Reed R. Splicing is required for rapid and efficient mRNA export in metazoans. Proc Natl Acad Sci, USA. 1999;96(26):14937–14942. doi: 10.1073/pnas.96.26.14937
  • Valencia P, Dias AP, Reed R. Splicing promotes rapid and efficient mRNA export in mammalian cells. Proc Natl Acad Sci, USA. 2008;105(9):3386–3391. doi: 10.1073/pnas.0800250105
  • Palazzo AF, Springer M, Shibata Y, et al. The signal sequence coding region promotes nuclear export of mRNA. PLoS Biol. 2007;5(12):e322. doi: 10.1371/journal.pbio.0050322
  • Palazzo A, Mahadevan K, Tarnawsky S. ALREX-elements and introns: two identity elements that promote mRNA nuclear export. WIREs RNA. 2013;4(5):523–533. doi: 10.1002/wrna.1176
  • Mordstein C, Savisaar R, Young RS, et al. Codon usage and splicing jointly influence mRNA localization. Cell Systems. 2020;10(4):351–362.e8. doi: 10.1016/j.cels.2020.03.001
  • Zuckerman B, Ron M, Mikl M, et al. Gene architecture and sequence composition underpin selective dependency of nuclear export of long RNAs on NXF1 and the TREX complex. Molecular Cell. 2020;79(2):251–267.e6. doi: 10.1016/j.molcel.2020.05.013
  • Palazzo AF, Kang YM. GC-content biases in protein-coding genes act as an “mRNA identity” feature for nuclear export. BioEssays. 2021;43(2):2000197. doi: 10.1002/bies.202000197
  • Garland W, Jensen TH. Nuclear sorting of RNA. WIREs RNA. 2020;11(2):e1572. doi: 10.1002/wrna.1572
  • Akef A, Lee ES, Palazzo AF. Splicing promotes the nuclear export of β-globin mRNA by overcoming nuclear retention elements. RNA. 2015;21(11):1908–1920. doi: 10.1261/rna.051987.115
  • Lee ES, Akef A, Mahadevan K, et al. The consensus 5’ splice site motif inhibits mRNA nuclear export. PLoS One. 2015;10(3):e0122743. doi: 10.1371/journal.pone.0122743
  • Lee ES, Smith HW, Wolf EJ, et al. ZFC3H1 and U1-70K promote the nuclear retention of mRNAs with 5’ splice site motifs within nuclear speckles. RNA. 2022;28(6):878–894. doi: 10.1261/rna.079104.122
  • Culjkovic B, Topisirovic I, Skrabanek L, et al. eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′UTR. J Cell Bio. 2005;169(2):245–256. doi: 10.1083/jcb.200501019
  • Yamazaki T, Fujiwara N, Yukinaga H, et al. The closely related RNA helicases, UAP56 and URH49, preferentially form distinct mRNA export machineries and coordinately regulate mitotic progression. Mol Biol Cell. 2010;21(16):2953–2965. doi: 10.1091/mbc.E09-10-0913
  • Borden K, Culkovic-Kraljacic B. mRNA export and its dysregulation in disease. In: Yang W, editor. Nuclear-cytoplasmic transport. Nucleic acids and molecular biology. Springer International Publishing; 2018. p. 179–204. doi: 10.1007/978-3-319-77309-4_8
  • Lefaudeux D, Sen S, Jiang K, et al. Kinetics of mRNA nuclear export regulate innate immune response gene expression. Nat Commun. 2022;13(1):7197. doi: 10.1038/s41467-022-34635-5
  • Zander G, Hackmann A, Bender L, et al. mRNA quality control is bypassed for immediate export of stress-responsive transcripts. Nature. 2016;540(7634):593–596. doi: 10.1038/nature20572
  • Mihaylov SR, Castelli LM, Lin YH, et al. The master energy homeostasis regulator PGC-1α exhibits an mRNA nuclear export function. Nat Commun. 2023;14(1):5496. doi: 10.1038/s41467-023-41304-8
  • Boutz PL, Bhutkar A, Sharp PA. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev. 2015;29(1):63–80. doi: 10.1101/gad.247361.114
  • Bahar Halpern K, Caspi I, Lemze D, et al. Nuclear retention of mRNA in mammalian tissues. Cell Rep. 2015;13(12):2653–2662. doi: 10.1016/j.celrep.2015.11.036
  • Madhani HD. The frustrated gene: origins of eukaryotic gene expression. Cell. 2013;155(4):744–749. doi: 10.1016/j.cell.2013.10.003
  • Shen Q, Wang YE, Palazzo AF. Crosstalk between nucleocytoplasmic trafficking and the innate immune response to viral infection. J Biol Chem. 2021;297(1):100856. doi: 10.1016/j.jbc.2021.100856
  • Luo ML, Zhou Z, Magni K, et al. Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature. 2001;413(6856):644–647. doi: 10.1038/35098106
  • Strässer K, Masuda S, Mason P, et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature. 2002;417(6886):304–308. doi: 10.1038/nature746
  • Masuda S, Das R, Cheng H, et al. Recruitment of the human TREX complex to mRNA during splicing. Genes Dev. 2005;19(13):1512–1517. doi: 10.1101/gad.1302205
  • Le Hir H, Izaurralde E, Maquat LE, et al. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 2000;19(24):6860–6869. doi: 10.1093/emboj/19.24.6860
  • Le Hir H, Gatfield D, Izaurralde E, et al. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 2001;20(17):4987–4997. doi: 10.1093/emboj/20.17.4987
  • Nott A, Le Hir H, Moore MJ. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev. 2004;18(2):210–222. doi: 10.1101/gad.1163204
  • Woodward LA, Mabin JW, Gangras P, et al. The exon junction complex: a lifelong guardian of mRNA fate. WIREs RNA. 2017;8(3). doi: 10.1002/wrna.1411
  • Xie Y, Gao S, Zhang K, et al. Structural basis for high-order complex of SARNP and DDX39B to facilitate mRNP assembly. Cell Rep. 2023;42(8):112988. doi: 10.1016/j.celrep.2023.112988
  • Lee ES, Wolf EJ, Ihn SSJ, et al. TPR is required for the efficient nuclear export of mRNAs and lncRNAs from short and intron-poor genes. Nucleic Acids Res. 2020;48(20):11645–11663. doi: 10.1093/nar/gkaa919
  • Thomas A, Rehfeld F, Zhang H, et al. RBM33 directs the nuclear export of transcripts containing GC-rich elements. Genes Dev. 2022;36(9–10):550–565. doi: 10.1101/gad.349456.122
  • Mahadevan K, Zhang H, Akef A, et al. RanBP2/Nup358 potentiates the translation of a subset of mRNAs encoding secretory proteins. PLoS Biol. 2013;11(4):e1001545. doi: 10.1371/journal.pbio.1001545
  • Kudla G, Lipinski L, Caffin F, et al. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 2006;4(6):e180. doi: 10.1371/journal.pbio.0040180
  • Lee ES, de Olivera LS, Jomphe RY, et al. N-6-methyladenosine (m6A) promotes the nuclear retention of mRNAs with intact 5’ splice site motifs. Published online 2023 Jun 21; 2023.06.20.545713. doi: 10.1101/2023.06.20.545713
  • Furth PA, Choe WT, Rex JH, et al. Sequences homologous to 5’ splice sites are required for the inhibitory activity of papillomavirus late 3’ untranslated regions. Mol Cell Biol. 1994;14(8):5278–5289. doi: 10.1128/MCB.14.8.5278
  • Ashe MP, Griffin P, James W, et al. Poly(a) site selection in the HIV-1 provirus: inhibition of promoter-proximal polyadenylation by the downstream major splice donor site. Genes Dev. 1995;9(23):3008–3025. doi: 10.1101/gad.9.23.3008
  • Ashe MP, Pearson LH, Proudfoot NJ. The HIV-1 5’ LTR poly(A) site is inactivated by U1 snRNP interaction with the downstream major splice donor site. EMBO J. 1997;16(18):5752–5763. doi: 10.1093/emboj/16.18.5752
  • Gunderson SI, Polycarpou-Schwarz M, Mattaj IW. U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) polymerase. Mol Cell. 1998;1(2):255–264. doi: 10.1016/S1097-2765(00)80026-X
  • Vagner S, Rüegsegger U, Gunderson SI, et al. Position-dependent inhibition of the cleavage step of pre-mRNA 3’-end processing by U1 snRNP. RNA. 2000;6(2):178–188. doi: 10.1017/S1355838200991854
  • Langemeier J, Schrom EM, Rabner A, et al. A complex immunodeficiency is based on U1 snRNP-mediated poly(A) site suppression. EMBO J. 2012;31(20):4035–4044. doi: 10.1038/emboj.2012.252
  • Kaida D, Berg MG, Younis I, et al. U1 snRNP protects pre-mRnas from premature cleavage and polyadenylation. Nature. 2010;468(7324):664–668. doi: 10.1038/nature09479
  • Berg MG, Singh LN, Younis I, et al. U1 snRNP determines mRNA length and regulates isoform expression. Cell. 2012;150(1):53–64. doi: 10.1016/j.cell.2012.05.029
  • Almada AE, Wu X, Kriz AJ, et al. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature. 2013;499(7458):360–363. doi: 10.1038/nature12349
  • Liu J, Dou X, Chen C, et al. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science. 2020;367(6477):580–586. doi: 10.1126/science.aay6018
  • Wang X, Lu Z, Gomez A, et al. m6A-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–120. doi: 10.1038/nature12730
  • Du H, Zhao Y, He J, et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat Commun. 2016;7(1):12626. doi: 10.1038/ncomms12626
  • Boo SH, Ha H, Lee Y, et al. UPF1 promotes rapid degradation of m6A-containing RNAs. Cell Rep. 2022;39(8):110861. doi: 10.1016/j.celrep.2022.110861
  • Seczynska M, Bloor S, Cuesta SM, et al. Genome surveillance by HUSH-mediated silencing of intronless mobile elements. Nature. 2022;601(7893):440–445. doi: 10.1038/s41586-021-04228-1
  • Seczynska M, Lehner PJ. The sound of silence: mechanisms and implications of HUSH complex function. Trends Genet. 2023;39(4):251–267. doi: 10.1016/j.tig.2022.12.005
  • Spencley AL, Bar S, Swigut T, et al. Co-transcriptional genome surveillance by HUSH is coupled to termination machinery. Molecular Cell. 2023;83(10):1623–1639.e8. doi: 10.1016/j.molcel.2023.04.014
  • Kumar M, Carmichael GG. Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. PNAS. 1997;94(8):3542–3547. doi: 10.1073/pnas.94.8.3542
  • Zhang Z, Carmichael GG. The fate of dsRNA in the nucleus. Cell. 2001;106(4):465–476. doi: 10.1016/S0092-8674(01)00466-4
  • Park E, Maquat LE. Staufen-mediated mRNA decay. WIREs RNA. 2013;4(4):423–435. doi: 10.1002/wrna.1168
  • Lucas BA, Lavi E, Shiue L, et al. Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay. PNAS. 2018;115(5):968–973. doi: 10.1073/pnas.1715531115
  • Katahira J. mRNA export and the TREX complex. Biochim Biophys Acta Gene Regul Mech. 2012;1819(6):507–513. doi: 10.1016/j.bbagrm.2011.12.001
  • Heath CG, Viphakone N, Wilson SA. The role of TREX in gene expression and disease. Biochem J. 2016;473(19):2911–2935. doi: 10.1042/BCJ20160010
  • Stutz F, Bachi A, Doerks T, et al. REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA. 2000;6(4):638–650. doi: 10.1017/S1355838200000078
  • Hautbergue GM, Hung ML, Golovanov AP, et al. Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. Proc Natl Acad Sci, USA. 2008;105(13):5154–5159. doi: 10.1073/pnas.0709167105
  • Katahira J, Inoue H, Hurt E, et al. Adaptor aly and co-adaptor Thoc5 function in the Tap-p15-mediated nuclear export of HSP70 mRNA. EMBO J. 2009;28(5):556–567. doi: 10.1038/emboj.2009.5
  • Hung ML, Hautbergue GM, Snijders APL, et al. Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1. Nucleic Acids Res. 2010;38(10):3351–3361. doi: 10.1093/nar/gkq033
  • Viphakone N, Hautbergue GM, Walsh M, et al. TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat Commun. 2012;3(1):1006. doi: 10.1038/ncomms2005
  • Singh G, Kucukural A, Cenik C, et al. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell. 2012;151(4):915–916. doi: 10.1016/j.cell.2012.10.032
  • Viphakone N, Sudbery I, Griffith L, et al. Co-transcriptional loading of RNA export factors shapes the human transcriptome. Molecular Cell. 2019;75(2):310–323.e8. doi: 10.1016/j.molcel.2019.04.034
  • Xie Y, Clarke BP, Kim YJ, et al. Cryo-EM structure of the yeast TREX complex and coordination with the SR-like protein Gbp2. Elife. 2021;10:e65699. doi: 10.7554/eLife.65699
  • Pacheco-Fiallos B, Vorländer MK, Riabov-Bassat D, et al. mRNA recognition and packaging by the human transcription–export complex. Nature. 2023;616(7958):828–835. doi: 10.1038/s41586-023-05904-0
  • Asada R, Dominguez A, Montpetit B. Single-molecule quantitation of RNA-binding protein occupancy and stoichiometry defines a role for Yra1 (Aly/REF) in nuclear mRNP organization. Cell Rep. 2023;42(11):113415. doi: 10.1016/j.celrep.2023.113415
  • Sharova LV, Sharov AA, Nedorezov T, et al. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 2009;16(1):45–58. doi: 10.1093/dnares/dsn030
  • Spies N, Burge CB, Bartel DP. 3′ UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. Genome Res. 2013;23(12):2078–2090. doi: 10.1101/gr.156919.113
  • Agarwal V, Shendure J. Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks. Cell Rep. 2020;31(7):107663. doi: 10.1016/j.celrep.2020.107663
  • Agarwal V, Kelley D. The genetic and biochemical determinants of mRNA degradation rates in mammals Genome Biology. 2022;23: ;245. doi: 10.1186/s13059-022-02811-x
  • Green DM, Marfatia KA, Crafton EB, et al. Nab2p is required for poly(A) RNA export in Saccharomyces cerevisiae and is regulated by arginine methylation via Hmt1p. J Biol Chem. 2002;277(10):7752–7760. doi: 10.1074/jbc.M110053200
  • Hector RE, Nykamp KR, Dheur S, et al. Dual requirement for yeast hnRNP Nab2p in mRNA poly(A) tail length control and nuclear export. EMBO J. 2002;21(7):1800–1810. doi: 10.1093/emboj/21.7.1800
  • Cheng H, Dufu K, Lee CS, et al. Human mRNA export machinery recruited to the 5’ end of mRNA. Cell. 2006;127(7):1389–1400. doi: 10.1016/j.cell.2006.10.044
  • Apponi LH, Leung SW, Williams KR, et al. Loss of nuclear poly(A)-binding protein 1 causes defects in myogenesis and mRNA biogenesis. Hum Mol Genet. 2010;19(6):1058–1065. doi: 10.1093/hmg/ddp569
  • Cenik C, Chua HN, Zhang H, et al. Genome analysis reveals interplay between 5’UTR introns and nuclear mRNA export for secretory and mitochondrial genes. PLoS Genet. 2011;7(4):e1001366. doi: 10.1371/journal.pgen.1001366
  • Cenik C, Chua HN, Singh G, et al. A common class of transcripts with 5’-intron depletion, distinct early coding sequence features, and N(1)-methyladenosine modification. RNA. 2017;23(3):270–283. doi: 10.1261/rna.059105.116
  • Tarnawsky SP, Palazzo AF. Positional requirements for the stimulation of mRNA nuclear export by ALREX-promoting elements. Mol Biosyst. 2012;8(10):2527–2530. doi: 10.1039/c2mb25016k
  • Lei H, Dias AP, Reed R. Export and stability of naturally intronless mRnas require specific coding region sequences and the TREX mRNA export complex. Proc Natl Acad Sci, USA. 2011;108(44):17985–17990. doi: 10.1073/pnas.1113076108
  • Lei H, Zhai B, Yin S, et al. Evidence that a consensus element found in naturally intronless mRNAs promotes mRNA export. Nucleic Acids Res. 2013;41(4):2517–2525. doi: 10.1093/nar/gks1314
  • Smalec BM, Ietswaart R, Choquet K, et al. Genome-wide quantification of RNA flow across subcellular compartments reveals determinants of the mammalian transcript life cycle. Published online 2022 Aug 21;2022.08.21.504696. doi: 10.1101/2022.08.21.504696
  • Akef A, Zhang H, Masuda S, et al. Trafficking of mRnas containing ALREX-promoting elements through nuclear speckles. Nucleus. 2013;4(4):326–340. doi: 10.4161/nucl.26052
  • Chi B, Wang K, Du Y, et al. A sub-element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18. Nucleic Acids Res. 2014;42(11):7305–7318. doi: 10.1093/nar/gku350
  • Aksenova V, Smith A, Lee H, et al. Nucleoporin TPR is an integral component of the TREX-2 mRNA export pathway. Nat Commun. 2020;11(1):4577. doi: 10.1038/s41467-020-18266-2
  • Folco EG, Lee CS, Dufu K, et al. The proteins PDIP3 and ZC11A associate with the human TREX complex in an ATP-dependent manner and function in mRNA export. PLoS One. 2012;7(8):e43804. doi: 10.1371/journal.pone.0043804
  • Wickramasinghe VO, Andrews R, Ellis P, et al. Selective nuclear export of specific classes of mRNA from mammalian nuclei is promoted by GANP. Nucleic Acids Res. 2014;42(8):5059–5071. doi: 10.1093/nar/gku095
  • Wan Y, Qu K, Zhang QC, et al. Landscape and variation of RNA secondary structure across the human transcriptome. Nature. 2014;505(7485):706–709. doi: 10.1038/nature12946
  • Kawaguchi R, Kiryu H. Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome. BMC Bioinf. 2016;17(1):203. doi: 10.1186/s12859-016-1067-9
  • Cook AG, Fukuhara N, Jinek M, et al. Structures of the tRNA export factor in the nuclear and cytosolic states. Nature. 2009;461(7260):60–65. doi: 10.1038/nature08394
  • Okada C, Yamashita E, Lee SJ, et al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science. 2009;326(5957):1275–1279. doi: 10.1126/science.1178705
  • Bley CJ, Nie S, Mobbs GW, et al. Architecture of the cytoplasmic face of the nuclear pore. Science. 2022;376(6598):eabm9129. doi: 10.1126/science.abm9129
  • Courel M, Clément Y, Bossevain C, et al. GC content shapes mRNA storage and decay in human cells. Elife. 2019;8:e49708. doi: 10.7554/eLife.49708
  • Jowhar Z, Xu A, Venkataramanan S, et al. A ubiquitous GC content signature underlies multimodal mRNA regulation by DDX3X. Published online 2023 Nov 23; 2023.05.11.540322. doi: 10.1101/2023.05.11.540322
  • Pouyet F, Mouchiroud D, Duret L, et al. Recombination, meiotic expression and human codon usage. Elife. 2017;6:e27344. doi: 10.7554/eLife.27344
  • Palazzo AF, Kejiou NS. Non-Darwinian molecular biology. Front Genet. 2022;13:831068. doi: 10.3389/fgene.2022.831068
  • Amit M, Donyo M, Hollander D, et al. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell Rep. 2012;1(5):543–556. doi: 10.1016/j.celrep.2012.03.013
  • Tammer L, Hameiri O, Keydar I, et al. Gene architecture directs splicing outcome in separate nuclear spatial regions. Molecular Cell. 2022;82(5):1021–1034.e8. doi: 10.1016/j.molcel.2022.02.001
  • Barutcu AR, Wu M, Braunschweig U, et al. Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns. Molecular Cell. 2022;82(5):1035–1052.e9. doi: 10.1016/j.molcel.2021.12.010
  • Bird AP. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980;8(7):1499–1504. doi: 10.1093/nar/8.7.1499
  • Takata MA, Gonçalves-Carneiro D, Zang TM, et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature. 2017;550(7674):124–127. doi: 10.1038/nature24039
  • Zhang S, Aibara S, Vos SM, et al. Structure of a transcribing RNA polymerase II–U1 snRNP complex. Science. 2021;371(6526):305–309. doi: 10.1126/science.abf1870
  • Meola N, Domanski M, Karadoulama E, et al. Identification of a nuclear exosome decay pathway for processed transcripts. Mol Cell. 2016;64(3):520–533. doi: 10.1016/j.molcel.2016.09.025
  • Ogami K, Richard P, Chen Y, et al. An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev. 2017;31(12):1257–1271. doi: 10.1101/gad.302604.117
  • Silla T, Schmid M, Dou Y, et al. The human ZC3H3 and RBM26/27 proteins are critical for PAXT-mediated nuclear RNA decay. Nucleic Acids Res. 2020;48(5):2518–2530. doi: 10.1093/nar/gkz1238
  • Wang Y, Fan J, Wang J, et al. ZFC3H1 prevents RNA trafficking into nuclear speckles through condensation. Nucleic Acids Res. 2021;49(18):10630–10643. doi: 10.1093/nar/gkab774
  • Fan J, Kuai B, Wu G, et al. Exosome cofactor hMTR4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export. EMBO J. 2017;36(19):2870–2886. doi: 10.15252/embj.201696139
  • Sugiyama T, Sugioka-Sugiyama R. Red1 promotes the elimination of meiosis-specific mRNAs in vegetatively growing fission yeast. EMBO J. 2011;30(6):1027–1039. doi: 10.1038/emboj.2011.32
  • Zhou Y, Zhu J, Schermann G, et al. The fission yeast MTREC complex targets CUTs and unspliced pre-mRNAs to the nuclear exosome. Nat Commun. 2015;6(1):7050. doi: 10.1038/ncomms8050
  • Shichino Y, Otsubo Y, Yamamoto M, et al. Meiotic gene silencing complex MTREC/NURS recruits the nuclear exosome to YTH-RNA-binding protein Mmi1. PLoS Genet. 2020;16(2):e1008598. doi: 10.1371/journal.pgen.1008598
  • Wang C, Zhu Y, Bao H, et al. A novel RNA-binding mode of the YTH domain reveals the mechanism for recognition of determinant of selective removal by Mmi1. Nucleic Acids Res. 2016;44(2):969–982. doi: 10.1093/nar/gkv1382
  • Vo TV, Dhakshnamoorthy J, Larkin M, et al. CPF recruitment to non-canonical transcription termination sites triggers heterochromatin assembly and gene silencing. Cell Rep. 2019;28(1):267–281.e5. doi: 10.1016/j.celrep.2019.05.107
  • Harigaya Y, Tanaka H, Yamanaka S, et al. Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature. 2006;442(7098):45–50. doi: 10.1038/nature04881
  • Dias AP, Dufu K, Lei H, et al. A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat Commun. 2010;1(1):97. doi: 10.1038/ncomms1103
  • Cheng Y, Xie W, Pickering BF, et al. N6-methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell. 2021;39(7):958–972.e8. doi: 10.1016/j.ccell.2021.04.017
  • Silla T, Karadoulama E, Mąkosa D, et al. The RNA exosome adaptor ZFC3H1 functionally competes with nuclear export activity to retain target transcripts. Cell Rep. 2018;23(7):2199–2210. doi: 10.1016/j.celrep.2018.04.061
  • Gao Y, Pei G, Li D, et al. Multivalent m6A motifs promote phase separation of YTHDF proteins. Cell Res. 2019;29(9):767–769. doi: 10.1038/s41422-019-0210-3
  • Wang J, Wang L, Diao J, et al. Binding to m6A RNA promotes YTHDF2-mediated phase separation. Protein Cell. 2020;11(4):304–307. doi: 10.1007/s13238-019-00660-2
  • Azam S, Hou S, Zhu B, et al. Nuclear retention element recruits U1 snRNP components to restrain spliced lncRNAs in the nucleus. RNA Biol. 2019;16(8):1001–1009. doi: 10.1080/15476286.2019.1620061
  • Yin Y, Lu JY, Zhang X, et al. U1 snRNP regulates chromatin retention of noncoding RNAs. Nature. 2020;580(7801):147–150. doi: 10.1038/s41586-020-2105-3
  • Tilgner H, Knowles DG, Johnson R, et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 2012;22(9):1616–1625. doi: 10.1101/gr.134445.111
  • Melé M, Mattioli K, Mallard W, et al. Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res. 2017;27(1):27–37. doi: 10.1101/gr.214205.116
  • Mukherjee N, Calviello L, Hirsekorn A, et al. Integrative classification of human coding and noncoding genes through RNA metabolism profiles. Nat Struct Mol Biol. 2017;24(1):86–96. doi: 10.1038/nsmb.3325
  • Deveson IW, Brunck ME, Blackburn J, et al. Universal alternative splicing of noncoding exons. Cell Syst. 2018;6(2):245–255.e5. doi: 10.1016/j.cels.2017.12.005
  • Zuckerman B, Ulitsky I. Predictive models of subcellular localization of long RNAs. RNA. 2019;25(5):557–572. doi: 10.1261/rna.068288.118
  • Johnson R, Guigó R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA. 2014;20(7):959–976. doi: 10.1261/rna.044560.114
  • An NA, Zhang J, Mo F, et al. De novo genes with an lncRNA origin encode unique human brain developmental functionality. Nat Ecol Evol. 2023;7(2):264–278. doi: 10.1038/s41559-022-01925-6
  • Legrain P, Rosbash M. Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell. 1989;57(4):573–583. doi: 10.1016/0092-8674(89)90127-X
  • Rain JC, Legrain P. In vivo commitment to splicing in yeast involves the nucleotide upstream from the branch site conserved sequence and the Mud2 protein. EMBO J. 1997;16(7):1759–1771. doi: 10.1093/emboj/16.7.1759
  • Takemura R, Takeiwa T, Taniguchi I, et al. Multiple factors in the early splicing complex are involved in the nuclear retention of pre-mRNAs in mammalian cells. Genes Cells. 2011;16(10):1035–1049. doi: 10.1111/j.1365-2443.2011.01548.x
  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–206. doi: 10.1038/nature11112
  • Molinie B, Giallourakis CC. Genome-wide location analyses of N6-methyladenosine modifications (m6A-seq). Methods Mol Biol. 2017;1562:45–53. doi: 10.1007/978-1-4939-6807-7_4
  • Yang X, Triboulet R, Liu Q, et al. Exon junction complex shapes the m6A epitranscriptome. Nat Commun. 2022;13(1):7904. doi: 10.1038/s41467-022-35643-1
  • Uzonyi A, Dierks D, Nir R, et al. Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability. Mol Cell. 2023;83(2):237–251.e7. doi: 10.1016/j.molcel.2022.12.026
  • He PC, Wei J, Dou X, et al. Exon architecture controls mRNA m6A suppression and gene expression. Science. 2023;379(6633):677–682. doi: 10.1126/science.abj9090
  • Covelo-Molares H, Obrdlik A, Poštulková I, et al. The comprehensive interactomes of human adenosine RNA methyltransferases and demethylases reveal distinct functional and regulatory features. Nucleic Acids Res. 2021;49(19):10895–10910. doi: 10.1093/nar/gkab900
  • Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that Impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29. doi: 10.1016/j.molcel.2012.10.015
  • Roundtree IA, Luo GZ, Zhang Z, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. 2017;6:e31311. doi: 10.7554/eLife.31311
  • Lesbirel S, Viphakone N, Parker M, et al. The m6A-methylase complex recruits TREX and regulates mRNA export. Sci Rep. 2018;8(1):13827. doi: 10.1038/s41598-018-32310-8
  • Lesbirel S, Wilson SA. The m6A‑methylase complex and mRNA export. Biochim Biophys Acta Gene Regul Mech. 2019;1862(3):319–328. doi: 10.1016/j.bbagrm.2018.09.008
  • He C, Lan F. RNA m6A meets transposable elements and chromatin. Protein Cell. 2021;12(12):906–910. doi: 10.1007/s13238-021-00859-2
  • Wu G, Schmid M, Rib L, et al. A two-layered targeting mechanism underlies nuclear RNA sorting by the human exosome. Cell Rep. 2020;30(7):2387–2401.e5. doi: 10.1016/j.celrep.2020.01.068
  • Garland W, Müller I, Wu M, et al. Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression. Molecular Cell. 2022;82(9):1691–1707.e8. doi: 10.1016/j.molcel.2022.03.004
  • Jalloh B, Lancaster CL, Rounds JC, et al. The drosophila Nab2 RNA binding protein inhibits m6A methylation and male-specific splicing of sex lethal transcript in female neuronal tissue.Elife. 2023;12:e64904. doi: 10.7554/eLife.64904
  • Polson AG, Crain PF, Pomerantz SC, et al. The mechanism of adenosine to inosine conversion by the double-stranded RNA unwinding/modifying activity: a high-performance liquid chromatography-mass spectrometry analysis. Biochemistry. 1991;30(49):11507–11514. doi: 10.1021/bi00113a004
  • Athanasiadis A, Rich A, Maas S, et al. Widespread A-to-I RNA editing of alu-containing mRNAs in the human transcriptome. PLoS Biol. 2004;2(12):e391. doi: 10.1371/journal.pbio.0020391
  • Blow M, Futreal PA, Wooster R, et al. A survey of RNA editing in human brain. Genome Res. 2004;14(12):2379–2387. doi: 10.1101/gr.2951204
  • Kim DDY, Kim TTY, Walsh T, et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 2004;14(9):1719–1725. doi: 10.1101/gr.2855504
  • Levanon EY, Eisenberg E, Yelin R, et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol. 2004;22(8):1001–1005. doi: 10.1038/nbt996
  • Chen LL, Carmichael GG. Gene regulation by SINES and inosines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle. 2008;7(21):3294–3301. doi: 10.4161/cc.7.21.6927
  • Prasanth KV, Prasanth SG, Xuan Z, et al. Regulating gene expression through RNA nuclear retention. Cell. 2005;123(2):249–263. doi: 10.1016/j.cell.2005.08.033
  • Chen LL, DeCerbo JN, Carmichael GG. Alu element‐mediated gene silencing. EMBO J. 2008;27(12):1694–1705. doi: 10.1038/emboj.2008.94
  • Chen LL, Carmichael GG. Altered nuclear retention of mRnas containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Molecular Cell. 2009;35(4):467–478. doi: 10.1016/j.molcel.2009.06.027
  • Freund EC, Sapiro AL, Li Q, et al. Unbiased identification of trans regulators of ADAR and A-to-I RNA editing. Cell Rep. 2020;31(7):107656. doi: 10.1016/j.celrep.2020.107656
  • Zhang B, Gunawardane L, Niazi F, et al. A novel RNA motif mediates the strict nuclear localization of a long noncoding RNA. Mol Cell Biol. 2014;34(12):2318–2329. doi: 10.1128/MCB.01673-13
  • Yang X, Yang Y, Sun BF, et al. 5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 2017;27(5):606–625. doi: 10.1038/cr.2017.55
  • Lubelsky Y, Ulitsky I. Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature. 2018;555(7694):107–111. doi: 10.1038/nature25757
  • Miyagawa R, Tano K, Mizuno R, et al. Identification of cis- and trans-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. RNA. 2012;18(4):738–751. doi: 10.1261/rna.028639.111
  • Shukla CJ, McCorkindale AL, Gerhardinger C, et al. High‐throughput identification of RNA nuclear enrichment sequences. EMBO J. 2018;37(6). doi: 10.15252/embj.201798452