665
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Epitranscriptomic regulation in fasting hearts: implications for cardiac health

, , , , , & ORCID Icon show all
Pages 1-14 | Accepted 16 Jan 2024, Published online: 07 Feb 2024

References

  • WHO. The Top 10 Causes Of Death. [2020 Nov 24]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
  • Ostadal B. The past, the present and the future of experimental research on myocardial ischemia and protection. Pharmacol Rep. 2009;61(1):3–12. doi: 10.1016/S1734-1140(09)70002-7
  • Wan R, Ahmet I, Brown M, et al. Cardioprotective effect of intermittent fasting is associated with an elevation of adiponectin levels in rats. J Nutr Biochem. 2010;21(5):413–7. doi: 10.1016/j.jnutbio.2009.01.020
  • Snorek M, Hodyc D, Sedivy V, et al. Short-term fasting reduces the extent of myocardial infarction and incidence of reperfusion arrhythmias in rats. Physiol Res. 2012;61(6):567–74. doi: 10.33549/physiolres.932338
  • Longenecker JZ, Gilbert CJ, Golubeva VA, et al. Epitranscriptomics in the heart: a focus on m(6)A. Curr Heart Fail Rep. 2020;17(5):205–212. doi: 10.1007/s11897-020-00473-z
  • Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971–5. doi: 10.1073/pnas.71.10.3971
  • Wei C, Gershowitz A, Moss B. N6, O2’-dimethyladenosine a novel methylated ribonucleoside next to the 5’ terminal of animal cell and virus mRnas. Nature. 1975;257(5523):251–253. doi: 10.1038/257251a0
  • Benak D, Benakova S, Plecita-Hlavata L, et al. The role of m6A and m6Am RNA modifications in the pathogenesis of diabetes mellitus. Front Endocrinol. 2023;14:1223583. doi: 10.3389/fendo.2023.1223583
  • Oerum S, Meynier V, Catala M, et al. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 2021;49(13):7239–7255. doi: 10.1093/nar/gkab378
  • Edupuganti RR, Geiger S, Lindeboom RGH, et al. N(6)-methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol. 2017;24(10):870–878. doi: 10.1038/nsmb.3462
  • Dieterich C, Völkers M. Chapter 6 - RNA modifications in cardiovascular disease—An experimental and computational perspective. In: Devaux Y, and Robinson EL, editors Epigenetics in cardiovascular disease. London, UK: Academic Press; 2021. pp. 113–125.
  • Sweaad WK, Stefanizzi FM, Chamorro-Jorganes A, et al. Relevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system. J Mol Cell Cardiol. 2021;160:56–70. doi: 10.1016/j.yjmcc.2021.05.006
  • Semenovykh D, Benak D, Holzerova K, et al. Myocardial m6A regulators in postnatal development: effect of sex. Physiol Res. 2022;71(6):877–882. doi: 10.33549/physiolres.934970
  • Benak D, Kolar F, Zhang L, et al. RNA modification m6Am: the role in cardiac biology. Epigenetics. 2023;18(1):2218771. doi: 10.1080/15592294.2023.2218771
  • Song H, Feng X, Zhang H, et al. METTL3 and ALKBH5 oppositely regulate m6a modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy. 2019;15(8):1419–1437. doi: 10.1080/15548627.2019.1586246
  • Mathiyalagan P, Adamiak M, Mayourian J, et al. FTO-Dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation. 2019;139(4):518–532. doi: 10.1161/CIRCULATIONAHA.118.033794
  • Kmietczyk V, Riechert E, Kalinski L, et al. m6A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance. 2019;2(2):e201800233. doi: 10.26508/lsa.201800233
  • Deng W, Jin Q, Li L. Protective mechanism of demethylase fat mass and obesity-associated protein in energy metabolism disorder of hypoxia-reoxygenation-induced cardiomyocytes. Exp Physiol. 2021;106(12):2423–2433. doi: 10.1113/EP089901
  • Shen W, Li H, Su H, et al. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt. Mol Cell Biochem. 2021;476(5):2171–2179. doi: 10.1007/s11010-021-04069-6
  • Ke WL, Huang Z-W, Peng C-L, et al. M6a demethylase FTO regulates the apoptosis and inflammation of cardiomyocytes via YAP1 in ischemia-reperfusion injury. Bioengineered. 2022;13(3):5443–5452. doi: 10.1080/21655979.2022.2030572
  • Zhang X, Li F, Ma J, et al. ALKBH5 alleviates hypoxia postconditioning injury in D-galactose–induced senescent cardiomyocytes by regulating STAT3. Shock. 2023;59(1):91–98. doi: 10.1097/SHK.0000000000002031
  • Xu Z, Qin Y, Lv B, et al. Intermittent fasting improves high-fat diet-induced obesity cardiomyopathy via alleviating lipid deposition and apoptosis and decreasing m6A methylation in the heart. Nutrients. 2022;14(2):251. doi: 10.3390/nu14020251
  • Hrdlicka J, Neckar J, Papousek F, et al. Epoxyeicosatrienoic acid-based therapy attenuates the progression of postischemic heart failure in Normotensive Sprague-Dawley but not in Hypertensive Ren-2 Transgenic Rats. Front Pharmacol. 2019;10:159. doi: 10.3389/fphar.2019.00159
  • Lee TM, Lin MS, Chang NC. Effect of ATP-sensitive potassium channel agonists on ventricular remodeling in healed rat infarcts. J Am Coll Cardiol. 2008;51(13):1309–18. doi: 10.1016/j.jacc.2007.11.067
  • Alanova P, Chytilova A, Neckar J, et al. Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia. J Appl Physiol. 2017;122(6):1452–1461. doi: 10.1152/japplphysiol.00671.2016
  • Neckar J, Hsu A, Hye Khan MA, et al. Infarct size-limiting effect of epoxyeicosatrienoic acid analog EET-B is mediated by hypoxia-inducible factor-1α via downregulation of prolyl hydroxylase 3. Am J Physiol Heart Circ Physiol. 2018;315(5):H1148–h1158. doi: 10.1152/ajpheart.00726.2017
  • Benak D, Sotakova-Kasparova D, Neckar J, et al. Selection of optimal reference genes for gene expression studies in chronically hypoxic rat heart. Mol Cell Biochem. 2019;461(1–2):15–22. doi: 10.1007/s11010-019-03584-x
  • Sander H, Wallace S, Plouse R, et al. Ponceau S waste: Ponceau S staining for total protein normalization. Anal Biochem. 2019;575:44–53. doi: 10.1016/j.ab.2019.03.010
  • Cajka T, Hricko J, Rudl Kulhava L, et al. Optimization of Mobile phase modifiers for fast LC-MS-Based untargeted metabolomics and Lipidomics. Int J Mol Sci. 2023;24(3):1987. doi: 10.3390/ijms24031987
  • Hricko J, Rudl Kulhava L, Paucova M, et al. Short-term stability of serum and liver extracts for untargeted metabolomics and Lipidomics. Antioxidants. 2023;12(5):986. doi: 10.3390/antiox12050986
  • Kolb H, Kempf K, Röhling M, et al. Ketone bodies: from enemy to friend and guardian angel. BMC Med. 2021;19(1):313. doi: 10.1186/s12916-021-02185-0
  • Hlavackova M, Kardami E, Fandrich R, et al. Do different nuclei in a binucleated cardiomyocyte have different rates of nuclear protein import? J Mol Cell Cardiol. 2019;126:140–142. doi: 10.1016/j.yjmcc.2018.08.030
  • Zheng G, Cox T, Tribbey L, et al. Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem Neurosci. 2014;5(8):658–65. doi: 10.1021/cn500042t
  • Selberg S. Rational design of novel anticancer small-molecule RNA m6A demethylase ALKBH5 inhibitors. ACS Omega. 2021;6(20):13310–13320. doi: 10.1021/acsomega.1c01289
  • Pokorna Z, Jirkovsky E, Hlavackova M, et al. In vitro and in vivo investigation of cardiotoxicity associated with anticancer proteasome inhibitors and their combination with anthracycline. Clin Sci (Lond). 2019;133(16):1827–1844. doi: 10.1042/CS20190139
  • Snytnikova O, Tsentalovich Y, Sagdeev R, et al. Quantitative Metabolomic Analysis of Changes in the rat blood serum during autophagy modulation: a focus on accelerated senescence. Int J Mol Sci. 2022;23(21):23(21. doi: 10.3390/ijms232112720
  • Peng L, Long T, Li F, et al. Emerging role of m6A modification in cardiovascular diseases. Cell Biol Int. 2022;46(5):711–722. doi: 10.1002/cbin.11773
  • Hlavackova M. Fat mass and obesity-associated protein in chronically hypoxic myocardium. High Altitude Med Bio. 2018;19(4):A–443. doi: 10.1089/ham.2018.29015.abstracts
  • Sepich-Poore C, Zheng Z, Schmitt E, et al. The METTL5-TRMT112 N(6)-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation. J Biol Chem. 2022;298(3):101590. doi: 10.1016/j.jbc.2022.101590
  • Han Y, Du T, Guo S, et al. Loss of m(6)A methyltransferase METTL5 promotes cardiac hypertrophy through epitranscriptomic control of SUZ12 expression. Front Cardiovasc Med. 2022;9:852775. doi: 10.3389/fcvm.2022.852775
  • Ge M, Bai X, Liu A, et al. An eIf3a gene mutation dysregulates myocardium growth with left ventricular noncompaction via the p-ERK1/2 pathway. Genes Dis. 2021;8(4):545–554. doi: 10.1016/j.gendis.2020.02.003
  • Li B, Chen H, Yang X, et al. Knockdown of eIf3a ameliorates cardiac fibrosis by inhibiting the TGF-β1/Smad3 signaling pathway. Cell Mol Biol (Noisy-le-Grand). 2016;62(7):97–101.
  • Liu T, Wei Q, Jin J, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48(7):3816–3831. doi: 10.1093/nar/gkaa048
  • Ge Y, Jin J, Li J, et al. The roles of G3BP1 in human diseases (review). Gene. 2022;821:146294. doi: 10.1016/j.gene.2022.146294
  • Jin G, Zhang Z, Wan J, et al. G3BP2: structure and function. Pharmacol Res. 2022;186:106548. doi: 10.1016/j.phrs.2022.106548
  • Hong HQ, Lu J, Fang X-L, et al. G3BP2 is involved in isoproterenol-induced cardiac hypertrophy through activating the NF-κB signaling pathway. Acta Pharmacol Sin. 2018;39(2):184–194. doi: 10.1038/aps.2017.58
  • Li T, Safitri M, Zhang K, et al. Downregulation of G3BP2 reduces atherosclerotic lesions in ApoE(-/-) mice. Atherosclerosis. 2020;310:64–74. doi: 10.1016/j.atherosclerosis.2020.08.003
  • Xiao X, He Z, Tong S, et al., lncRNA XIST knockdown suppresses hypoxia/reoxygenation (H/R)-induced apoptosis of H9C2 cells by regulating miR-545-3p/G3BP2. Life IUBMB. 2021;73(9):1103–1114. doi: 10.1002/iub.2512
  • Masuda K, Abdelmohsen K, Gorospe M. RNA-binding proteins implicated in the hypoxic response. J Cell Mol Med. 2009;13(9a):2759–69. doi: 10.1111/j.1582-4934.2009.00842.x
  • Chen H-Y, Xiao Z-Z, Ling X, et al. ELAVL1 is transcriptionally activated by FOXC1 and promotes ferroptosis in myocardial ischemia/reperfusion injury by regulating autophagy. Mol Med. 2021;27(1):14. doi: 10.1186/s10020-021-00271-w
  • Krishnamurthy P, Lambers E, Verma S, et al. Myocardial knockdown of mRNA-stabilizing protein HuR attenuates post-MI inflammatory response and left ventricular dysfunction in IL-10-null mice. FASEB J. 2010;24(7):2484–94. doi: 10.1096/fj.09-149815
  • Zhang DH, Zhang J-L, Huang Z, et al. Deubiquitinase Ubiquitin-Specific Protease 10 Deficiency Regulates Sirt6 signaling and Exacerbates Cardiac Hypertrophy. J Am Heart Assoc. 2020;9(22):e017751. doi: 10.1161/JAHA.120.017751
  • Liu LB, Huang S-H, Qiu H-L, et al. Limonin stabilises sirtuin 6 (SIRT6) by activating ubiquitin specific peptidase 10 (USP10) in cardiac hypertrophy. Br J Pharmacol. 2022;179(18):4516–4533. doi: 10.1111/bph.15899
  • Huang J, Liu Y, Wang M, et al. FoxO4 negatively modulates USP10 transcription to aggravate the apoptosis and oxidative stress of hypoxia/reoxygenation-induced cardiomyocytes by regulating the Hippo/YAP pathway. J Bioenerg Biomembr. 2021;53(5):541–551. doi: 10.1007/s10863-021-09910-7
  • Gray SP, Shah AM, Smyrnias I. NADPH oxidase 4 and its role in the cardiovascular system. Vasc Biol. 2019;1(1):H59–h66. doi: 10.1530/VB-19-0014
  • Varga ZV, Pipicz M, Baán JA, et al. Alternative splicing of NOX4 in the failing human heart. Front Physiol. 2017;8:935. doi: 10.3389/fphys.2017.00935
  • Li Y, Zhang Z, Zhou X, et al. Histone Deacetylase 1 inhibition protects against hypoxia-induced swelling in H9c2 cardiomyocytes through regulating cell stiffness. Circ J. 2017;82(1):192–202. doi: 10.1253/circj.CJ-17-0022