858
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Mature microRNA-binding protein QKI promotes microRNA-mediated gene silencing

ORCID Icon, , , , , , , , , , , , , , , , & show all
Pages 1-15 | Accepted 29 Jan 2024, Published online: 19 Feb 2024

References

  • Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11(2):113–127. doi: 10.1038/nrm2838
  • Gehring NH, Wahle E, Fischer U. Deciphering the mRNP code: RNA-bound determinants of post-transcriptional gene regulation. Trends Biochem Sci. 2017;42(5):369–382. doi: 10.1016/j.tibs.2017.02.004
  • Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16(7):421–433. doi: 10.1038/nrg3965
  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–524. doi: 10.1038/nrm3838
  • Yoon J-H, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol. 2013;425(19):3723–3730. doi: 10.1016/j.jmb.2012.11.024
  • Chiang HR, Schoenfeld LW, Ruby JG, et al. Mammalian microRnas: experimental evaluation of novel and previously annotated genes. Genes Dev. 2010;24(10):992–1009. doi: 10.1101/gad.1884710
  • Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true human miRnas. Nucleic Acids Res. 2019;47(7):3353–3364. doi: 10.1093/nar/gkz097
  • Towler BP, Jones CI, Newbury SF. Mechanisms of regulation of mature miRnas. Biochem Soc Trans. 2015;43(6):1208–1214. doi: 10.1042/BST20150157
  • Chatterjee S, Großhans H. Active turnover modulates mature microRNA activity in caenorhabditis elegans. Nature. 2009;461(7263):546–549. doi: 10.1038/nature08349
  • Han J, LaVigne CA, Jones BT, et al. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science. 2020;370(6523):eabc9546. doi: 10.1126/science.abc9546
  • Shi CY, Kingston ER, Kleaveland B, et al. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science. 2020;370(6523):eabc9359. doi: 10.1126/science.abc9359
  • Kim Y-K, Kim B, Kim VN. Re-evaluation of the roles of DROSHA, exportin 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci. 2016;113(13):E1881–E1889. doi: 10.1073/pnas.1602532113
  • Kawamata T, Seitz H, Tomari Y. Structural determinants of miRnas for RISC loading and slicer-independent unwinding. Nat Struct Mol Biol. 2009;16(9):953–960. doi: 10.1038/nsmb.1630
  • Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol. 2012;19(6):586–593. doi: 10.1038/nsmb.2296
  • Marzi MJ, Ghini F, Cerruti B, et al. Degradation dynamics of microRnas revealed by a novel pulse-chase approach. Genome Res. 2016;26(4):554–565. doi: 10.1101/gr.198788.115
  • Ghini F, Rubolino C, Climent M, et al. Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation. Nat Commun. 2018;9(1):1–15. doi: 10.1038/s41467-018-05182-9
  • Kleaveland B, Shi CY, Stefano J, et al. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell. 2018;174(2):350–362. e17. doi: 10.1016/j.cell.2018.05.022
  • Elbarbary RA, Miyoshi K, Myers JR, et al. Tudor-SN–mediated endonucleolytic decay of human cell microRnas promotes G1/S phase transition. Science. 2017;356(6340):859–862. doi: 10.1126/science.aai9372
  • Becker WR, Ober-Reynolds B, Jouravleva K, et al. High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2. Mol Cell. 2019;75(4):741–755. e11. doi: 10.1016/j.molcel.2019.06.012
  • Sheu-Gruttadauria J, Pawlica P, Klum SM, et al. Structural basis for target-directed microRNA degradation. Mol Cell. 2019;75(6):1243–1255. e7. doi: 10.1016/j.molcel.2019.06.019
  • Baccarini A, Chauhan H, Gardner TJ, et al. Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol. 2011;21(5):369–376. doi: 10.1016/j.cub.2011.01.067
  • Kingston ER, Bartel DP. Global analyses of the dynamics of mammalian microRNA metabolism. Genome Res. 2019;29(11):1777–1790. doi: 10.1101/gr.251421.119
  • Shukla S, Bjerke GA, Muhlrad D, et al. The RNase PARN controls the levels of specific miRnas that contribute to p53 regulation. Mol Cell. 2019;73(6):1204–1216. e4. doi: 10.1016/j.molcel.2019.01.010
  • Reichholf B, Herzog VA, Fasching N, et al. Time-resolved small RNA sequencing unravels the molecular principles of microRNA homeostasis. Mol Cell. 2019;75(4):756–768. e7. doi: 10.1016/j.molcel.2019.06.018
  • Lee D, Park D, Park JH, et al. Poly (A)-specific ribonuclease sculpts the 3′ ends of microRnas. RNA. 2019;25(3):388–405. doi: 10.1261/rna.069633.118
  • Katoh T, Sakaguchi Y, Miyauchi K, et al. Selective stabilization of mammalian microRnas by 3′ adenylation mediated by the cytoplasmic poly (A) polymerase GLD-2. Genes Dev. 2009;23(4):433–438. doi: 10.1101/gad.1761509
  • Li J, Yang Z, Yu B, et al. Methylation protects miRnas and siRnas from a 3′-end uridylation activity in arabidopsis. Curr Biol. 2005;15(16):1501–1507. doi: 10.1016/j.cub.2005.07.029
  • De Bruin RG, Shiue L, Prins J, et al. Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression. Nat Commun. 2016;7(1):1–20. doi: 10.1038/ncomms10846
  • Larocque D, Pilotte J, Chen T, et al. Nuclear retention of MBP mRnas in the quaking viable mice. Neuron. 2002;36(5):815–829. doi: 10.1016/S0896-6273(02)01055-3
  • Thangaraj MP, Furber KL, Gan JK, et al. RNA-binding protein quaking stabilizes Sirt2 mRNA during oligodendroglial differentiation. J Biol Chem. 2017;292(13):5166–5182. doi: 10.1074/jbc.M117.775544
  • Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRnas. Cell. 2015;160(6):1125–1134. doi: 10.1016/j.cell.2015.02.014
  • Zhu Y, Xu G, Yang YT, et al. POSTAR2: deciphering the post-transcriptional regulatory logics. Nucleic Acids Res. 2019;47(D1):D203–D211. doi: 10.1093/nar/gky830
  • Hafner M, Landthaler M, Burger L, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 2010;141(1):129–141. doi: 10.1016/j.cell.2010.03.009
  • Büssing I, Slack FJ, Großhans H. Let-7 microRnas in development, stem cells and cancer. Trends Mol Med. 2008;14(9):400–409. doi: 10.1016/j.molmed.2008.07.001
  • Sheedy FJ. Turning 21: induction of miR-21 as a key switch in the inflammatory response. Front Immunol. 2015;6:19. doi: 10.3389/fimmu.2015.00019
  • Yamamichi N, Shimomura R, K-I I, et al. Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development. Clin Cancer Res. 2009;15(12):4009–4016. doi: 10.1158/1078-0432.CCR-08-3257
  • Wang Z, Li Y, Ahmad A, et al. Targeting miRnas involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Updat. 2010;13(4–5):109–118. doi: 10.1016/j.drup.2010.07.001
  • Massey VL, Qin L, Cabezas J, et al. TLR 7‐let‐7 signaling contributes to Ethanol‐Induced hepatic inflammatory response in mice and in alcoholic hepatitis. Alcohol Clin Exp Res. 2018;42(11):2107–2122. doi: 10.1111/acer.13871
  • Zhang M, Zhou Z, Wang J, et al. MiR-130b promotes obesity associated adipose tissue inflammation and insulin resistance in diabetes mice through alleviating M2 macrophage polarization via repression of PPAR-γ. Immunol Lett. 2016;180:1–8. doi: 10.1016/j.imlet.2016.10.004
  • Hojo H, Yashiro Y, Noda Y, et al. The RNA-binding protein QKI-7 recruits the poly(A) polymerase GLD-2 for 3’ adenylation and selective stabilization of microRNA-122. J Biol Chem. 2020 Jan 10;295(2):390–402. doi: 10.1074/jbc.RA119.011617
  • Wang Y, Lacroix G, Haines J, et al. The QKI-6 RNA binding protein localizes with the MBP mRnas in stress granules of glial cells. PloS One. 2010;5(9):e12824. doi: 10.1371/journal.pone.0012824
  • Lee Y, Ahn C, Han J, et al. The nuclear RNase III drosha initiates microRNA processing. Nature. 2003;425(6956):415–419. doi: 10.1038/nature01957
  • Gregory RI, Yan K-P, Amuthan G, et al. The microprocessor complex mediates the genesis of microRnas. Nature. 2004;432(7014):235–240. doi: 10.1038/nature03120
  • Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass drosha processing. Nature. 2007;448(7149):83–86. doi: 10.1038/nature05983
  • Yang J-S, Maurin T, Robine N, et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proceedings of the National Academy of SciencesProc Natl Acad Sci. 2010;107(34):15163–15168. doi: 10.1073/pnas.1006432107
  • Yoon J-H, Jo MH, White EJ, et al. AUF1 promotes let-7b loading on Argonaute 2. Genes Dev. 2015;29(15):1599–1604. doi: 10.1101/gad.263749.115
  • Dang CV. MYC on the path to cancer. Cell. 2012 Mar 30;149(1):22–35. doi: 10.1016/j.cell.2012.03.003
  • Meškytė EM, Keskas S, Ciribilli Y. MYC as a multifaceted regulator of tumor microenvironment leading to metastasis. Int J Mol Sci. 2020;21(20):7710. doi: 10.3390/ijms21207710
  • Min KW, Evans JG, Won EC, et al. Detection of MicroRNAs released from Argonautes. Methods Mol Biol. 2020;2106:151–159.
  • Broughton JP, Lovci MT, Huang JL, et al. Pairing beyond the seed supports MicroRNA targeting specificity. Mol Cell. 2016 Oct 20;64(2):320–333. doi: 10.1016/j.molcel.2016.09.004
  • Jo MH, Shin S, Jung S-R, et al. Human argonaute 2 has diverse reaction pathways on target RNAs. Mol Cell. 2015;59(1):117–124. doi: 10.1016/j.molcel.2015.04.027
  • Min K-W, Jo MH, Shin S, et al. AUF1 facilitates microRNA-mediated gene silencing. Nucleic Acids Res. 2017;45(10):6064–6073. doi: 10.1093/nar/gkx149
  • Ciafrè SA, Galardi S. microRnas and RNA-binding proteins: a complex network of interactions and reciprocal regulations in cancer. RNA Biol. 2013;10(6):934–942. doi: 10.4161/rna.24641
  • Chen Y, Song Y, Huang J, et al. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. Front Neurol. 2017;8:57. doi: 10.3389/fneur.2017.00057
  • Zangari J, Ilie M, Rouaud F, et al. Rapid decay of engulfed extracellular miRNA by XRN1 exonuclease promotes transient epithelial-mesenchymal transition. Nucleic Acids Res. 2017;45(7):4131–4141. doi: 10.1093/nar/gky213
  • Rupaimoole R, Calin GA, Lopez-Berestein G, et al. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 2016;6(3):235–246. doi: 10.1158/2159-8290.CD-15-0893
  • Ding SL, Zhou LY, Li PF. MicroRNAs in cardiac hypertrophy: angels or devils. Wiley Interdiscip Rev RNA. 2011;2(1):124–134. doi: 10.1002/wrna.61
  • Abe M, Bonini NM. MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol. 2013;23(1):30–36. doi: 10.1016/j.tcb.2012.08.013
  • Wu JI, Reed RB, Grabowski PJ, et al. Function of quaking in myelination: regulation of alternative splicing. Proc Natl Acad Sci, USA. 2002;99(7):4233–4238. doi: 10.1073/pnas.072090399
  • Misiewicz-Krzeminska I, Krzeminski P, Corchete LA, et al. Factors regulating microRNA expression and function in multiple myeloma. NcRNA. 2019;5(1):9. doi: 10.3390/ncrna5010009
  • Kingston ER, Bartel DP. Ago2 protects drosophila siRnas and microRnas from target-directed degradation, even in the absence of 2′-O-methylation. RNA. 2021;27(6):710–724. doi: 10.1261/rna.078746.121
  • O’Carroll D, Mecklenbrauker I, Das PP, et al. A slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 2007;21(16):1999–2004. doi: 10.1101/gad.1565607
  • Diederichs S, Jung S, Rothenberg SM, et al. Coexpression of argonaute-2 enhances RNA interference toward perfect match binding sites. Proc Natl Acad Sci, USA. 2008;105(27):9284–9289. doi: 10.1073/pnas.0800803105
  • Martinez NJ, Gregory RI. Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA. 2013;19(5):605–612. doi: 10.1261/rna.036434.112
  • Zealy RW, Wrenn SP, Davila S, et al. microRNA‐binding proteins: specificity and function. Wiley Interdiscip Rev RNA. 2017;8(5):e1414. doi: 10.1002/wrna.1414
  • Yoon J-H, Abdelmohsen K, Kim J, et al. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun. 2013;4(1):1–14. doi: 10.1038/ncomms3939
  • Eiring AM, Harb JG, Neviani P, et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010;140(5):652–665. doi: 10.1016/j.cell.2010.01.007
  • Gleitsman KR, Sengupta RN, Herschlag D. Slow molecular recognition by RNA. RNA. 2017;23(12):1745–1753. doi: 10.1261/rna.062026.117
  • Park S, Myszka DG, Yu M, et al. HuD RNA recognition motifs play distinct roles in the formation of a stable complex with AU-rich RNA. Mol Cell Biol. 2000;20(13):4765–4772. doi: 10.1128/MCB.20.13.4765-4772.2000
  • Park-Lee S, Kim S, Laird-Offringa IA. Characterization of the interaction between neuronal RNA-binding protein HuD and AU-rich RNA. J Biol Chem. 2003;278(41):39801–39808. doi: 10.1074/jbc.M307105200
  • Salomon WE, Jolly SM, Moore MJ, et al. Single-molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides. Cell. 2015;162(1):84–95. doi: 10.1016/j.cell.2015.06.029
  • Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRnas by stem–loop RT–PCR. Nucleic Acids Res. 2005;33(20):e179–e179. doi: 10.1093/nar/gni178
  • Shen K, S-O S. Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting. Proc Natl Acad Sci, USA. 2010;107(17):7698–7703. doi: 10.1073/pnas.1002968107
  • Arluison V, Buckle M, Grosjean H. Pseudouridine synthetase Pus1 of Saccharomyces cerevisiae: kinetic characterisation, tRNA structural requirement and real-time analysis of its complex with tRNA. J Mol Biol. 1999;289(3):491–502. doi: 10.1006/jmbi.1999.2789
  • Golden RJ, Chen B, Li T, et al. An argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature. 2017;542(7640):197–202. doi: 10.1038/nature21025
  • Yoon J-H, Abdelmohsen K, Srikantan S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012;47(4):648–655. doi: 10.1016/j.molcel.2012.06.027
  • Roy R, Hohng S, Ha T. A practical guide to single-molecule FRET. Nat Methods. 2008;5(6):507–516. doi: 10.1038/nmeth.1208
  • Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D162. doi: 10.1093/nar/gky1141
  • Friedländer MR, Mackowiak SD, Li N, et al. miRdeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40(1):37–52. doi: 10.1093/nar/gkr688
  • Broughton JP, Pasquinelli AE. Detection of microRNA-target interactions by chimera PCR (ChimP). Methods Mol Biol. 2018;1823:153–165.