669
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

RNA-dependent proteome solubility maintenance in Escherichia coli lysates analysed by quantitative mass spectrometry: Proteomic characterization in terms of isoelectric point, structural disorder, functional hub, and chaperone network

, , , , , & show all
Pages 1-18 | Accepted 02 Feb 2024, Published online: 15 Feb 2024

References

  • Dobson CM. Protein folding and misfolding. Nature. 2003;426(6968):884–890.
  • Vendruscolo M. Proteome folding and aggregation. Curr Opin Struct Biol. 2012;22(2):138–143. doi: 10.1016/j.sbi.2012.01.005
  • Varela AE, Lang JF, Wu Y, et al. Kinetic trapping of folded proteins relative to aggregates under physiologically relevant conditions. J Phys Chem B. 2018;122(31):7682–7698. doi: 10.1021/acs.jpcb.8b05360
  • Choi SI, Seong BL. A social distancing measure governing the whole proteome. Curr Opin Struct Biol. 2021;66:104–111. doi: 10.1016/j.sbi.2020.10.014
  • Chiti F, Protein Misfolding DC. Amyloid formation, and human disease: a summary of progress over the Last Decade. Annu Rev Biochem. 2017;86(1):27–68. doi: 10.1146/annurev-biochem-061516-045115
  • Vendruscolo M, Knowles TP, Dobson CM. Protein solubility and protein homeostasis: a generic view of protein misfolding disorders. Cold Spring Harb Perspect Biol. 2011;3(12):a010454–a010454. doi: 10.1101/cshperspect.a010454
  • Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002;295(5561):1852–1858.
  • Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell. 1998;92(3):351–366.
  • Liu C, Young AL, Starling-Windhof A, et al. Coupled chaperone action in folding and assembly of hexadecameric rubisco. Nature. 2010;463(7278):197–202.
  • Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324–332.
  • Das B, Chattopadhyay S, Bera AK, et al. In vitro protein folding by ribosomes from Escherichia coli, wheat germ and rat liver: the role of the 50S particle and its 23S rRNA. Eur J Biochem. 1996;235(3):613–621. doi: 10.1111/j.1432-1033.1996.00613.x
  • Kudlicki W, Coffman A, Kramer G, et al. Ribosomes and ribosomal RNA as chaperones for folding of proteins. Fold Des. 1997;2(2):101–108. doi: 10.1016/S1359-0278(97)00014-X
  • Choi SI, Han KS, Kim CW, et al. Protein solubility and folding enhancement by interaction with RNA. PloS One. 2008;3(7):e2677. doi: 10.1371/journal.pone.0002677
  • Yang SW, Jang YH, Kwon SB, et al. Harnessing an RNA-mediated chaperone for the assembly of influenza hemagglutinin in an immunologically relevant conformation. FASEB J. 2018;32(5):2658–2675. doi: 10.1096/fj.201700747RR
  • Hwang BJ, Jang Y, Kwon SB, et al. RNA-assisted self-assembly of monomeric antigens into virus-like particles as a recombinant vaccine platform. Biomaterials. 2021;269:120650.
  • Choi SI, Ryu K, Seong BL. RNA-mediated chaperone type for de novo protein folding. RNA Biol. 2009;6(1):21–24. doi: 10.4161/rna.6.1.7441
  • Choi SI, Son A, Lim KH, et al. Macromolecule-assisted de novo protein folding. Int J Mol Sci. 2012;13(8):10368–10386. doi: 10.3390/ijms130810368
  • Park C, Jin Y, Kim YJ, et al. RNA-binding as chaperones of DNA binding proteins from starved cells. Biochem Biophys Res Commun. 2020;524(2):484–489. doi: 10.1016/j.bbrc.2020.01.121
  • Son A, Horowitz S, Seong BL. Chaperna: linking the ancient RNA and protein worlds. RNA Biol. 2021;18(1):16–23. doi: 10.1080/15476286.2020.1801199
  • Docter BE, Horowitz S, Gray MJ, et al. Do nucleic acids moonlight as molecular chaperones? Nucleic Acids Res. 2016;44(10):4835–4845. doi: 10.1093/nar/gkw291
  • Begeman A, Son A, Litberg TJ, et al. G-Quadruplexes act as sequence-dependent protein chaperones. EMBO Rep. 2020;21(10):e49735. doi: 10.15252/embr.201949735
  • Son A, Huizar Cabral V, Huang Z, et al. G-quadruplexes rescuing protein folding. Proc Natl Acad Sci U S A. 2023;120(20):e2216308120. doi: 10.1073/pnas.2216308120
  • Miller DW, Dill KA. Ligand binding to proteins: the binding landscape model. Protein Sci. 1997;6(10):2166–2179. doi: 10.1002/pro.5560061011
  • Frankel AD, Smith CA. Induced folding in RNA-protein recognition: more than a simple molecular handshake. Cell. 1998;92(2):149–151. doi: 10.1016/S0092-8674(00)80908-3
  • Sanchez-Ruiz JM. Ligand effects on protein thermodynamic stability. Biophys Chem. 2007;126(1–3):43–49. doi: 10.1016/j.bpc.2006.05.021
  • Randles LG, Batey S, Steward A, et al. Distinguishing specific and nonspecific interdomain interactions in multidomain proteins. Biophys J. 2008;94(2):622–628. doi: 10.1529/biophysj.107.119123
  • Sen S, Udgaonkar JB. Binding-induced folding under unfolding conditions: switching between induced fit and conformational selection mechanisms. J Biol Chem. 2019;294(45):16942–16952. doi: 10.1074/jbc.RA119.009742
  • Uversky VN, Alghamdi MF, Redwan EM. A bird’s-eye view of proteomics. Curr Protein Pept Sci. 2021;22(8):574–583. doi: 10.2174/1389203722666210812120751
  • Wright PE, Dyson HJ. Linking folding and binding. Curr Opin Struct Biol. 2009;19(1):31–38. doi: 10.1016/j.sbi.2008.12.003
  • Masino L, Nicastro G, Calder L, et al. Functional interactions as a survival strategy against abnormal aggregation. FASEB J. 2011;25(1):45–54. doi: 10.1096/fj.10-161208
  • Zacco E, Grana-Montes R, Martin SR, et al. RNA as a key factor in driving or preventing self-assembly of the TAR DNA-binding protein 43. J Mol Biol. 2019;431(8):1671–1688. doi: 10.1016/j.jmb.2019.01.028
  • Son A, Choi SI, Han G, et al. M1 RNA is important for the in-cell solubility of its cognate C5 protein: implications for RNA-mediated protein folding. RNA Biol. 2015;12(11):1198–1208. doi: 10.1080/15476286.2015.1096487
  • Calabretta S, Richard S. Emerging roles of disordered sequences in RNA-Binding proteins. Trends Biochem Sci. 2015;40(11):662–672. doi: 10.1016/j.tibs.2015.08.012
  • Jarvelin AI, Noerenberg M, Davis I, et al. The new (dis)order in RNA regulation. Cell Commun Signal. 2016;14:9. doi: 10.1186/s12964-016-0132-3
  • Protter DSW, Rao BS, Van Treeck B, et al. Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell Rep. 2018;22(6):1401–1412. doi: 10.1016/j.celrep.2018.01.036
  • Zhao B, Katuwawala A, Oldfield CJ, et al. Intrinsic Disorder in Human RNA-Binding Proteins. J Mol Biol. 2021;433(21):167229. doi: 10.1016/j.jmb.2021.167229
  • Aarum J, Cabrera CP, Jones TA, et al. Enzymatic degradation of RNA causes widespread protein aggregation in cell and tissue lysates. EMBO Rep. 2020;21(10):e49585. doi: 10.15252/embr.201949585
  • Kim CW, Han KS, Ryu KS, et al. N-terminal domains of native multidomain proteins have the potential to assist de novo folding of their downstream domains in vivo by acting as solubility enhancers. Protein Sci. 2007;16(4):635–643. doi: 10.1110/ps.062330907
  • Thompson A, Schafer J, Kuhn K, et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003;75(8):1895–1904. doi: 10.1021/ac0262560
  • Sridharan S, Kurzawa N, Werner T, et al. Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP. Nat Commun. 2019;10(1):1155.
  • Maatta TA, Rettel M, Sridharan S, et al. Aggregation and disaggregation features of the human proteome. Mol Syst Biol. 2020;16(10):e9500. doi: 10.15252/msb.20209500
  • Corley M, Burns MC, Yeo GW. How RNA-Binding proteins interact with RNA: molecules and mechanisms. Mol Cell. 2020;78(1):9–29. doi: 10.1016/j.molcel.2020.03.011
  • Bondos SE, Dunker AK, Uversky VN. On the roles of intrinsically disordered proteins and regions in cell communication and signaling. Cell Commun Signal. 2021;19(1):88.
  • Wright PE, Dyson HJ. Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol. 2015;16(1):18–29.
  • Dare K, Ibba M. Roles of tRNA in cell wall biosynthesis. Wiley Interdiscip Rev RNA. 2012;3(2):247–264. doi: 10.1002/wrna.1108
  • Aggarwal SD, Lloyd AJ, Yerneni SS, et al. A molecular link between cell wall biosynthesis, translation fidelity, and stringent response in streptococcus pneumoniae. Proc Natl Acad Sci U S A. 2021;118(14). doi: 10.1073/pnas.2018089118
  • Grob G, Hemmerle M, Yakobov N, et al. tRNA-dependent addition of amino acids to cell wall and membrane components. Biochimie. 2022;203:93–105.
  • Rüdiger S, Germeroth L, Schneider-Mergener J, et al. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 1997;16(7):1501–1507. doi: 10.1093/emboj/16.7.1501
  • Fenton WA, Kashi Y, Furtak K, et al. Residues in chaperonin GroEL required for polypeptide binding and release. Nature. 1994;371(6498):614–619. doi: 10.1038/371614a0
  • Kramer G, Rauch T, Rist W, et al. L23 protein functions as a chaperone docking site on the ribosome. Nature. 2002;419(6903):171–174.
  • Georgellis D, Sohlberg B, Hartl FU, et al. Identification of GroEL as a constituent of an mRNA-protection complex in Escherichia coli. Mol Microbiol. 1995;16(6):1259–1268. doi: 10.1111/j.1365-2958.1995.tb02347.x
  • Balakrishnan K, De Maio A. Heat shock protein 70 binds its own messenger ribonucleic acid as part of a gene expression self-limiting mechanism. Cell Stress Chaperones. 2006;11(1):44–50.
  • Deuerling E, Schulze-Specking A, Tomoyasu T, et al. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature. 1999;400(6745):693–696.
  • Houry WA, Frishman D, Eckerskorn C, et al. Identification of in vivo substrates of the chaperonin GroEL. Nature. 1999;402(6758):147–154.
  • Paraskevopoulou V, Falcone FH. Polyionic tags as enhancers of protein solubility in recombinant protein expression. Microorganisms. 2018;6(2). doi: 10.3390/microorganisms6020047
  • Qing R, Hao S, Smorodina E, et al. Protein design: from the aspect of water solubility and stability. Chem Rev. 2022;122(18):14085–14179. doi: 10.1021/acs.chemrev.1c00757
  • Sun Y, Arslan PE, Won A, et al. Binding of TDP-43 to the 3‘UTR of its cognate mRNA enhances its solubility. Biochemistry. 2014;53(37):5885–5894. doi: 10.1021/bi500617x
  • Zimmerman SB, Trach SO. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol. 1991;222(3):599–620. doi: 10.1016/0022-2836(91)90499-V
  • Speer SL, Stewart CJ, Sapir L, et al. Macromolecular Crowding Is More than Hard-Core Repulsions. Annu Rev Biophys. 2022;51(1):267–300. doi: 10.1146/annurev-biophys-091321-071829
  • Hu W, Qin L, Li M, et al. A structural dissection of protein-RNA interactions based on different RNA base areas of interfaces. RSC Adv. 2018;8(19):10582–10592. doi: 10.1039/C8RA00598B
  • Kovachev PS, Banerjee D, Rangel LP, et al. Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain. J Biol Chem. 2017;292(22):9345–9357. doi: 10.1074/jbc.M116.762096
  • Kovachev PS, Gomes MPB, Cordeiro Y, et al. RNA modulates aggregation of the recombinant mammalian prion protein by direct interaction. Sci Rep. 2019;9(1):12406.
  • Protter DSW, Parker R. Principles and properties of stress granules. Trends Cell Biol. 2016;26(9):668–679. doi: 10.1016/j.tcb.2016.05.004
  • Liu M, Li H, Luo X, et al. RPS: a comprehensive database of RNAs involved in liquid-liquid phase separation. Nucleic Acids Res. 2022;50(D1):D347–D55. doi: 10.1093/nar/gkab986
  • Samelson AJ, Jensen MK, Soto RA, et al. Quantitative determination of ribosome nascent chain stability. Proc Natl Acad Sci U S A. 2016;113(47):13402–13407. doi: 10.1073/pnas.1610272113
  • Sörensen T, Leeb S, Danielsson J, et al. Polyanions cause protein destabilization similar to that in live cells. Biochemistry. 2021;60(10):735–746.
  • Kishor A, White EJF, Matsangos AE, et al. Hsp70‘s RNA-binding and mRNA-stabilizing activities are independent of its protein chaperone functions. J Biol Chem. 2017;292(34):14122–14133. doi: 10.1074/jbc.M117.785394
  • Huang YW, Hu CC, Liou MR, et al. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of bamboo mosaic virus and associated satellite RNA. PLOS Pathog. 2012;8(5):e1002726. doi: 10.1371/journal.ppat.1002726
  • Yan W, Schilke B, Pfund C, et al. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J. 1998;17(16):4809–4817. doi: 10.1093/emboj/17.16.4809
  • Henics T. Extending the ‘stressy’ edge: molecular chaperones flirting with RNA. Cell Biol Int. 2003;27(1):1–6. doi: 10.1016/S1065-6995(02)00286-X
  • Ghosh J, Basu A, Pal S, et al. Ribosome-DnaK interactions in relation to protein folding. Mol Microbiol. 2003;48(6):1679–1692. doi: 10.1046/j.1365-2958.2003.03538.x
  • Kim HK, Choi SI, Seong BL. 5S rRNA-assisted DnaK refolding. Biochem Biophys Res Commun. 2010;391(2):1177–1181. doi: 10.1016/j.bbrc.2009.11.176
  • Joyce GF. The antiquity of RNA-based evolution. Nature. 2002;418(6894):214–221.
  • Higgs PG, Lehman N. The RNA World: molecular cooperation at the origins of life. Nat Rev Genet. 2015;16(1):7–17.
  • Armaos A, Zacco E, Sanchez de Groot N, et al. RNA-protein interactions: central players in coordination of regulatory networks. BioEssays. 2021;43(2):e2000118.
  • Wiedner HJ, Giudice J. It’s not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat Struct Mol Biol. 2021;28(6):465–473.
  • Milicevic K, Rankovic B, Andjus PR, et al. Emerging roles for phase separation of RNA-Binding proteins in cellular pathology of ALS. Front Cell Dev Biol. 2022;10:840256. doi: 10.3389/fcell.2022.840256
  • Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16(6):276–277. doi: 10.1016/S0168-9525(00)02024-2
  • Manza LL, Stamer SL, Ham AJ, et al. Sample preparation and digestion for proteomic analyses using spin filters. Proteomics. 2005;5(7):1742–1745. doi: 10.1002/pmic.200401063
  • Yang F, Shen Y, Camp DG 2nd, et al. High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev Proteomics. 2012;9(2):129–134. doi: 10.1586/epr.12.15
  • Perez-Riverol Y, Bai J, Bandla C, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50(D1):D543–D52. doi: 10.1093/nar/gkab1038
  • Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628–2629. doi: 10.1093/bioinformatics/btz931
  • Keseler IM, Gama-Castro S, Mackie A, et al. The EcoCyc database in 2021. Front Microbiol. 2021;12:711077. doi: 10.3389/fmicb.2021.711077
  • Dosztanyi Z, Csizmok V, Tompa P, et al. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol. 2005;347(4):827–839. doi: 10.1016/j.jmb.2005.01.071
  • Obradovic Z, Peng K, Vucetic S, et al. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins. 2005;61(Suppl 7):176–182. doi: 10.1002/prot.20735
  • Linding R, Jensen LJ, Diella F, et al. Protein disorder prediction: implications for structural proteomics. Structure. 2003;11(11):1453–1459.