1,197
Views
0
CrossRef citations to date
0
Altmetric
Review

Single-cell analysis of the epitranscriptome: RNA modifications under the microscope

, &
Pages 1-8 | Accepted 02 Feb 2024, Published online: 18 Feb 2024

References

  • Cappannini A, Ray A, Purta E, et al. Modomics: a database of RNA modifications and related information. 2023 Nucleic Acids Res. 2023;52(D1):D239–D244. doi: 10.1093/nar/gkad1083
  • Fersht AR. Review lecture enzymic editing mechanisms and the genetic code. Proc R Soc Lond B Biol Sci. 1981;212(1189):351–379.
  • Benne R, Van Den Burg J, Brakenhoff JPJ, et al. Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986;46(6):819–26. doi: 10.1016/0092-8674(86)90063-2
  • Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cells. Proc Nat Acad Sci. 1974;71(10):3971–3975. doi: 10.1073/pnas.71.10.3971
  • Perry RP, Kelley DE, LaTorre J. Synthesis and turnover of nuclear and cytoplasmic polyadenylic acid in mouse L cells. J Mol Biol. 1974;82(3):315–31. doi: 10.1016/0022-2836(74)90593-2
  • Wei CM, Gershowitz A, Moss B. Methylated nucleotides block 5’ terminus of HeLa cell messenger RNA. Cell. 1975;4(4):379–386. doi: 10.1016/0092-8674(75)90158-0
  • Cohn WE. Pseudouridine, a Carbon-Carbon Linked Ribonucleoside in Ribonucleic Acids: Isolation, Structure, and Chemical Characteristics. J Biol Chem. 1960;235(5):1488–98. doi: 10.1016/S0021-9258(18)69432-3
  • Amos H, Korn M. 5-methyl cytosine in the RNA of Escherichia coli. Biochim Biophys Acta. 1958;29(2):444–5. doi: 10.1016/0006-3002(58)90214-2
  • Esteve-Puig R, Bueno-Costa A, Esteller M. Writers, readers and erasers of RNA modifications in cancer. Cancer Lett. 2020;474:127–37. doi: 10.1016/j.canlet.2020.01.021
  • BioRender: 2023 BioRender; [cited 2023. Available from: https://www.biorender.com/.
  • Limbach PA, Crain PF, McCloskey JA. Summary: the modified nucleosides of RNA. Nucleic Acids Res. 1994;22(12):2183–96. doi: 10.1093/nar/22.12.2183
  • Jora M, Lobue PA, Ross RL, et al. Detection of ribonucleoside modifications by liquid chromatography coupled with mass spectrometry. Biochim Biophys Acta, Gene Regul Mech. 2019;1862(3):280–90. doi: 10.1016/j.bbagrm.2018.10.012
  • Schaefer M, Kapoor U, Jantsch MF. Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol. 2017;7(5):170077. doi: 10.1098/rsob.170077
  • Schwartz S, Bernstein Douglas A, Mumbach Maxwell R, et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell. 2014;159(1):148–162. doi: 10.1016/j.cell.2014.08.028
  • Carlile TM, Rojas-Duran MF, Zinshteyn B, et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. 2014;515(7525):143–6. doi: 10.1038/nature13802
  • Birkedal U, Christensen-Dalsgaard M, Krogh N, et al. Profiling of ribose methylations in RNA by high-throughput sequencing. Angewandte Chemie. 2015;54(2):451–5. doi: 10.1002/anie.201408362
  • Marchand V, Blanloeil-Oillo F, Helm M, et al. Illumina-based RiboMethSeq approach for mapping of 2’-O-Me residues in RNA. Nucleic Acids Res. 2016;44(16):e135. doi: 10.1093/nar/gkw547
  • Squires JE, Patel HR, Nousch M, et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 2012;40(11):5023–33. doi: 10.1093/nar/gks144
  • Edelheit S, Schwartz S, Mumbach MR, et al. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRnas. PLoS Genet. 2013;9(6):e1003602. doi: 10.1371/journal.pgen.1003602
  • Oakes E, Anderson A, Cohen-Gadol A, et al. Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma. J Biol Chem. 2017;292(10):4326–35. doi: 10.1074/jbc.M117.779868
  • Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530(7591):441–6. doi: 10.1038/nature16998
  • Li X, Xiong X, Wang K, et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat Chem Biol. 2016;12(5):311–316. doi: 10.1038/nchembio.2040
  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–6. doi: 10.1038/nature11112
  • Meyer Kate D, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3‘UTRs and near stop codons. Cell. 2012;149(7):1635–1646. doi: 10.1016/j.cell.2012.05.003
  • Ke S, Alemu EA, Mertens C, et al. A majority of m6A residues are in the last exons, allowing the potential for 3’ UTR regulation. Genes Dev. 2015;29(19):2037–2053. doi: 10.1101/gad.269415.115
  • Amort T, Rieder D, Wille A, et al. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Bio. 2017;18(1):1. doi: 10.1186/s13059-016-1139-1
  • Ortiz-Barahona V, Soler M, Davalos V, et al. Epigenetic inactivation of the 5-methylcytosine RNA methyltransferase NSUN7 is associated with clinical outcome and therapeutic vulnerability in liver cancer. Mol Cancer. 2023;22(1):83. doi: 10.1186/s12943-023-01785-z
  • Janin M, Ortiz-Barahona V, de Moura MC, et al. Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathol. 2019;138(6):1053–74. doi: 10.1007/s00401-019-02062-4
  • David R, Burgess A, Parker B, et al. Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRnas and noncoding RNAs. Plant Cell. 2017;29(3):445–60. doi: 10.1105/tpc.16.00751
  • Bazak L, Haviv A, Barak M, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014;24(3):365–76. doi: 10.1101/gr.164749.113
  • Chen J-W, Shrestha L, Green G, et al. The hitchhikers’ guide to RNA sequencing and functional analysis. Brief Bioinform. 2023;24(1). doi: 10.1093/bib/bbac529
  • Ke S, Pandya-Jones A, Saito Y, et al. m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev. 2017;31(10):990–1006. doi: 10.1101/gad.301036.117
  • Zhou KI, Shi H, Lyu R, et al. Regulation of Co-transcriptional pre-mRNA splicing by m(6)A through the low-complexity protein hnRNPG. Mol Cell. 2019;76(1):70–81.e9. doi: 10.1016/j.molcel.2019.07.005
  • Liu C, Sun H, Yi Y, et al. Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI. Nature Biotechnol. 2023;41(3):355–66. doi: 10.1038/s41587-022-01487-9
  • Jonkhout N, Tran J, Smith MA, et al. The RNA modification landscape in human disease. RNA. 2017;23(12):1754–69. doi: 10.1261/rna.063503.117
  • Stubbington MJT, Rozenblatt-Rosen O, Regev A, et al. Single-cell transcriptomics to explore the immune system in health and disease. Science. 2017;358(6359):58–63. doi: 10.1126/science.aan6828
  • Lein E, Borm LE, Linnarsson S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science. 2017;358(6359):64–9. doi: 10.1126/science.aan6827
  • Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet. 2016;17(3):175–88. doi: 10.1038/nrg.2015.16
  • Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8(1):14049. doi: 10.1038/ncomms14049
  • Ramsköld D, Luo S, Wang YC, et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30(8):777–82. doi: 10.1038/nbt.2282
  • Muraro MJ, Dharmadhikari G, Grün D, et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 2016;3(4):385–94.e3. doi: 10.1016/j.cels.2016.09.002
  • Kouno T, Moody J, Kwon AT, et al. C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution. Nat Commun. 2019;10(1):360. doi: 10.1038/s41467-018-08126-5
  • Dal Molin A, Di Camillo B. How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives. Brief Bioinform. 2018;20(4):1384–1394. doi: 10.1093/bib/bby007
  • Peterson VM, Zhang KX, Kumar N, et al. Multiplexed quantification of proteins and transcripts in single cells. Nature Biotechnol. 2017;35(10):936–9. doi: 10.1038/nbt.3973
  • Stoeckius M, Hafemeister C, Stephenson W, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14(9):865–868. doi: 10.1038/nmeth.4380
  • Ruff DW, Dhingra DM, Thompson K, et al. High-throughput multimodal single-cell targeted DNA and surface protein analysis using the mission bio tapestri platform. In: Ooi A, editor. Single-cell protein analysis: methods and protocols. New York, NY: Springer US; 2022. pp. 171–188.
  • Ståhl PL, Salmén F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353(6294):78–82. doi: 10.1126/science.aaf2403
  • Jin W, Tang Q, Wan M, et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature. 2015;528(7580):142–6. doi: 10.1038/nature15740
  • Buenrostro JD, Wu B, Litzenburger UM, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015;523(7561):486–90. doi: 10.1038/nature14590
  • Cusanovich DA, Daza R, Adey A, et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science. 2015;348(6237):910–4. doi: 10.1126/science.aab1601
  • Guo F, Li L, Li J, et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res. 2017;27(8):967–88. doi: 10.1038/cr.2017.82
  • Pott S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. Elife. 2017;6:e23203. doi: 10.7554/eLife.23203
  • Clark SJ, Argelaguet R, Kapourani C-A, et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun. 2018;9(1):781. doi: 10.1038/s41467-018-03149-4
  • Casado-Pelaez M, Bueno-Costa A, Esteller M. Single cell cancer epigenetics. Trends Cancer. 2022;8(10):820–38. doi: 10.1016/j.trecan.2022.06.005
  • Guo H, Zhu P, Wu X, et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 2013;23(12):2126–35. doi: 10.1101/gr.161679.113
  • Smallwood SA, Lee HJ, Angermueller C, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817–820. doi: 10.1038/nmeth.3035
  • Farlik M, Sheffield Nathan C, Nuzzo A, et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 2015;10(8):1386–1397. doi: 10.1016/j.celrep.2015.02.001
  • Mooijman D, Dey SS, Boisset J-C, et al. Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction. Nature Biotechnol. 2016;34(8):852–6. doi: 10.1038/nbt.3598
  • Zhu C, Gao Y, Guo H, et al. Single-cell 5-formylcytosine landscapes of mammalian early embryos and ESCs at single-base resolution. Cell Stem Cell. 2017;20(5):720–31.e5. doi: 10.1016/j.stem.2017.02.013
  • Zeng C, Huang W, Li Y, et al. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol. 2020;13(1):117. doi: 10.1186/s13045-020-00951-w
  • Chen K, Lu Z, Wang X, et al. High-resolution N6-methyladenosine (m6A) map using photo-crosslinking-assisted m6A sequencing. Angewandte Chemie. 2015;54(5):1587–90. doi: 10.1002/anie.201410647
  • Linder B, Grozhik AV, Olarerin-George AO, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015;12(8):767–772. doi: 10.1038/nmeth.3453
  • Molinie B, Wang J, Lim KS, et al. m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nat Methods. 2016;13(8):692–698. doi: 10.1038/nmeth.3898
  • Meyer KD. DART-seq: an antibody-free method for global m6A detection. Nat Methods. 2019;16(12):1275–1280. doi: 10.1038/s41592-019-0570-0
  • Garcia-Campos MA, Edelheit S, Toth U, et al. Deciphering the m6A code via antibody-independent quantitative profiling. Cell. 2019;178(3):731–47.e16. doi: 10.1016/j.cell.2019.06.013
  • Zhang Z, Chen L-Q, Zhao Y-L, et al. Single-base mapping of m6A by an antibody-independent method. Sci Adv. 2019;5(7):eaax0250. doi: 10.1126/sciadv.aax0250
  • Wang Y, Xiao Y, Dong S, et al. Antibody-free enzyme-assisted chemical approach for detection of N6-methyladenosine. Nat Chem Biol. 2020;16(8):896–903. doi: 10.1038/s41589-020-0525-x
  • Ren X, Deng R, Zhang K, et al. Single-cell imaging of m6A modified RNA using m6A-Specific in situ hybridization mediated proximity ligation assay (m6AISH-PLA). Angewandte Chemie. 2021;60(42):22646–51. doi: 10.1002/anie.202109118
  • Kim KL, van Galen P, Hovestadt V, et al. Systematic detection of m(6)A-modified transcripts at single-molecule and single-cell resolution. Cell Rep Methods. 2021;1(5):100061. doi: 10.1016/j.crmeth.2021.100061
  • Tegowski M, Flamand MN, Meyer KD. scDART-seq reveals distinct m6A signatures and mRNA methylation heterogeneity in single cells. Molecular Cell. 2022;82(4):868–78.e10. doi: 10.1016/j.molcel.2021.12.038
  • Yao H, Gao C-C, Zhang D, et al. scm6A-seq reveals single-cell landscapes of the dynamic m6A during oocyte maturation and early embryonic development. Nat Commun. 2023;14(1):315. doi: 10.1038/s41467-023-35958-7
  • Li Y, Wang Y, Vera-Rodriguez M, et al. Single-cell m6A mapping in vivo using picoMeRIP–seq. Nature Biotechnol. 2023. doi:10.1038/s41587-023-01831-7.
  • Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 2016;17(2):83–96. doi: 10.1038/nrm.2015.4
  • Jain M, Jantsch MF, Licht K. The Editor’s I on disease development. Trends Genet. 2019;35(12):903–913. doi: 10.1016/j.tig.2019.09.004
  • Fonzino A, Pesole G, Picardi E. Profiling RNA editing in single cells. Methods Mol Biol. 2023;2584:347–370.