2,732
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Urea supplementation improves mRNA in vitro transcription by decreasing both shorter and longer RNA byproducts

ORCID Icon, , , , , & show all
Pages 1-6 | Accepted 14 Feb 2024, Published online: 27 Feb 2024

References

  • Triana-Alonso FJ, Dabrowski M, Wadzack J, et al. Self-coded 3′-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J Biol Chem. 1995;270(11):6298–6307. doi: 10.1074/jbc.270.11.6298
  • Mu X, Greenwald E, Ahmad S, et al. An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Res. 2018;46(10):5239–5249. doi: 10.1093/nar/gky177
  • Gong P, Martin CT. Mechanism of instability in abortive cycling by T7 RNA polymerase. J Biol Chem. 2006;281(33):23533–23544. doi: 10.1074/jbc.M604023200
  • Gholamalipour Y, Karunanayake Mudiyanselage A, Martin CT. 3′ end additions by T7 RNA polymerase are RNA self-templated, distributive and diverse in character—RNA-Seq analyses. Nucleic Acids Res. 2018;46(18):9253–9263. doi: 10.1093/nar/gky796
  • Wu MZ, Asahara H, Tzertzinis G, et al. Synthesis of low immunogenicity RNA with high-temperature in vitro transcription. RNA. 2020;26(3):345–360. doi: 10.1261/rna.073858.119
  • Schenborn ET, Mierendorf RC. A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res. 1985;13(17):6223–6236. doi: 10.1093/nar/13.17.6223
  • Linares-Fernández S, Moreno J, Lambert E, et al. Combining an optimized mRNA template with a double purification process allows strong expression of in vitro transcribed mRNA. Mol Ther Nucleic Acids. 2021;26:945–956. doi: 10.1016/j.omtn.2021.10.007
  • Baiersdörfer M, Boros G, Muramatsu H, et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol Ther Nucleic Acids. 2019;15:26–35. doi: 10.1016/j.omtn.2019.02.018
  • Weissman D, Pardi N, Muramatsu H, et al. HPLC purification of in vitro transcribed long RNA. Methods Mol Biol. 2013;969:43–54.
  • Li C, Lee A, Grigoryan L, et al. Mechanisms of innate and adaptive immunity to the pfizer-BioNTech BNT162b2 vaccine. Nat Immunol. 2022;23(4):543–555. doi: 10.1038/s41590-022-01163-9
  • Katri E, Mirka L, Christine C, et al. Analysis and purification of ssRNA and dsRNA molecules using asymmetrical flow field flow fractionation. J Chromatogr A. 2022;1683:463525. doi: 10.1016/j.chroma.2022.463525
  • Dousis A, Ravichandran K, Hobert EM, et al. An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts. Nat Biotechnol. 2023;41(4):560–568. doi: 10.1038/s41587-022-01525-6
  • Xia H, Yu B, Jiang Y, et al. Psychrophilic phage VSW-3 RNA polymerase reduces both terminal and full-length dsRNA byproducts in in vitro transcription. RNA Biol. 2022;19(1):1130–1142. doi: 10.1080/15476286.2022.2139113
  • Piao X, Yadav V, Wang E, et al. Double-stranded RNA reduction by chaotropic agents during in vitro transcription of messenger RNA. Mol Ther Nucleic Acids. 2022;29:618–624. doi: 10.1016/j.omtn.2022.08.001
  • Luo D, Wu Z, Wang D, et al. Lateral flow immunoassay for rapid and sensitive detection of dsRNA contaminants in in vitro-transcribed mRNA products. Mol Ther Nucleic Acids. 2023;32:445–453. doi: 10.1016/j.omtn.2023.04.005
  • Bonin M, Oberstrass J, Lukacs N, et al. Determination of preferential binding sites for anti-dsRNA antibodies on double-stranded RNA by scanning force microscopy. RNA. 2000;6(4):563–570. doi: 10.1017/S1355838200992318
  • Karikó K, Muramatsu H, Ludwig J, et al. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011;39(21):e142. doi: 10.1093/nar/gkr695
  • Nwokeoji AO, Kung A-W, Kilby PM, et al. Purification and characterisation of dsRNA using ion pair reverse phase chromatography and mass spectrometry. J Chromatogr A. 2017;1484:14–25. doi: 10.1016/j.chroma.2016.12.062
  • Akama S, Yamamura M, Kigawa T. A multiphysics model of in vitro transcription coupling enzymatic reaction and precipitation formation. Biophys J. 2012;102(2):221–230. doi: 10.1016/j.bpj.2011.12.014
  • Dickerson AS, Lee JS, Keshava C, et al. Assessment of health effects of exogenous urea: summary and key findings. Curr Environ Health Rep. 2018;5(2):205–212. doi: 10.1007/s40572-018-0198-8
  • Pregeljc D, Skok J, Vodopivec T, et al. Increasing yield of in vitro transcription reaction with at-line high pressure liquid chromatography monitoring. Biotechnol Bioeng. 2023;120(3):737–747. doi: 10.1002/bit.28299
  • Henderson JM, Ujita A, Hill E, et al. Cap 1 messenger rna synthesis with co-transcriptional cleancap® analog by in vitro transcription. Curr Protoc. 2021;1(2):e39. doi: 10.1002/cpz1.39