475
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

The role of the 5’ sensing function of ribonuclease E in cyanobacteria

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1-18 | Accepted 05 Mar 2024, Published online: 12 Mar 2024

References

  • Laalami S, Zig L, Putzer H. Initiation of mRNA decay in bacteria. Cell Mol Life Sci. 2014;71(10):1799–1828. doi: 10.1007/s00018-013-1472-4
  • Hui MP, Foley PL, Belasco JG. Messenger RNA degradation in bacterial cells. Ann Rev Genet. 2014;48(1):537–559. doi: 10.1146/annurev-genet-120213-092340
  • Tejada-Arranz A, de Crécy-Lagard V, de Reuse H. Bacterial RNA degradosomes: molecular machines under tight control. Trends Biochem Sci. 2020;45(1):42–57. doi: 10.1016/j.tibs.2019.10.002
  • Ono M, Kuwano M. A conditional lethal mutation in an Escherichia coli strain with a longer chemical lifetime of messenger RNA. J Mol Biol. 1979;129(3):343–357. doi: 10.1016/0022-2836(79)90500-X
  • Garrey SM, Mackie GA Roles of the 5’-phosphate sensor domain in RNase E. Mol Microbiol. 2011;80(6):1613–1624. doi: 10.1111/j.1365-2958.2011.07670.x
  • Garrey SM, Blech M, Riffell JL, et al. Substrate binding and active site residues in RNases E and G. J Biol Chem. 2009;284(46):31843–31850. doi: 10.1074/jbc.M109.063263
  • Kime L, Clarke JE, Romero AD, et al. Adjacent single-stranded regions mediate processing of tRNA precursors by RNase E direct entry. Nucleic Acids Res. 2014;42(7):4577–4589. doi: 10.1093/nar/gkt1403
  • Clarke JE, Kime L, Romero AD, et al. Direct entry by RNase E is a major pathway for the degradation and processing of RNA in Escherichia coli. Nucleic Acids Res. 2014;42(18):11733–11751. doi: 10.1093/nar/gku808
  • Mohanty BK, Kushner SR. Processing of the alaW alaX operon encoding the Ala2 tRNAs in Escherichia coli requires both RNase E and RNase P. Mol Microbiol. 2022;118(6):698–715. doi: 10.1111/mmi.14991
  • Gurevitz M, Jain SK, Apirion D. Identification of a precursor molecule for the RNA moiety of the processing enzyme RNase P. Proc Natl Acad Sci. 1983;80(14):4450. doi: 10.1073/pnas.80.14.4450
  • Lundberg U, Altman S Processing of the precursor to the catalytic RNA subunit of RNase P from Escherichia coli. RNA. 1995;1(3):327–334.
  • Lin-Chao S, Wei C-L, Lin Y-T. RNase E is required for the maturation of ssrA RNA and normal ssrA RNA peptide-tagging activity. Proc Natl Acad Sci. 1999;96(22):12406–12411. doi: 10.1073/pnas.96.22.12406
  • Kim K-S, Lee Y Regulation of 6S RNA biogenesis by switching utilization of both sigma factors and endoribonucleases. Nucleic Acids Res. 2004;32(20):6057–6068. doi: 10.1093/nar/gkh939.
  • Miyakoshi M, Chao Y, Vogel J. Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA. EMBO J. 2015;34(11):1478–1492. doi: 10.15252/embj.201490546
  • Chao Y, Vogel J A 3’ UTR-Derived small RNA provides the regulatory noncoding arm of the inner membrane stress response. Mol Cell. 2016;61(3):352–363. doi: 10.1016/j.molcel.2015.12.023.
  • Chao Y, Li L, Girodat D, et al. In vivo cleavage map illuminates the central role of RNase E in coding and non-coding RNA pathways. Mol Cell. 2017;65(1):39–51. doi: 10.1016/j.molcel.2016.11.002
  • Bandyra KJ, Wandzik JM, Luisi BF Substrate recognition and autoinhibition in the central ribonuclease RNase E. Mol Cell. 2018;72(2):275–285.e4. doi: 10.1016/j.molcel.2018.08.039.
  • Bandyra KJ, Said N, Pfeiffer V, et al. The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol Cell. 2012;47(6):943–953. doi: 10.1016/j.molcel.2012.07.015
  • Callaghan AJ, Marcaida MJ, Stead JA, et al. Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover. Nature. 2005;437(7062):1187–1191. doi: 10.1038/nature04084.
  • Aït-Bara S, Carpousis AJ. RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs. Mol Microbiol. 2015;97(6):1021–1135. doi: 10.1111/mmi.13095
  • Clarke JE, Sabharwal K, Kime L, et al. The recognition of structured elements by a conserved groove distant from domains associated with catalysis is an essential determinant of RNase E. Nucleic Acids Res. 2023;51(1):365–379. doi: 10.1093/nar/gkac1228
  • Zhang J-Y, Deng X-M, Li F-P, et al. RNase E forms a complex with polynucleotide phosphorylase in cyanobacteria via a cyanobacterial-specific nonapeptide in the noncatalytic region. RNA. 2014;20(4):568–579. doi: 10.1261/rna.043513.113
  • Behler J, Sharma K, Reimann V, et al. The host-encoded RNase E endonuclease as the crRNA maturation enzyme in a CRISPR–cas subtype III-Bv system. Nat Microbiol. 2018;3(3):367–377. doi: 10.1038/s41564-017-0103-5
  • Yan H, Qin X, Wang L, et al. Both enolase and the DEAD-Box RNA helicase CrhB can form complexes with RNase E in Anabaena sp. Strain PCC 7120. Appl Environ Microbiol. 2020;86(13):e00425–20. doi: 10.1128/AEM.00425-20
  • Zhou C, Zhang J, Hu X, et al. RNase II binds to RNase E and modulates its endoribonucleolytic activity in the cyanobacterium Anabaena PCC 7120. Nucleic Acids Res. 2020;48(7):3922–3934. doi: 10.1093/nar/gkaa092
  • Jourdan SS, McDowall KJ Sensing of 5’ monophosphate by Escherichia coli RNase G can significantly enhance association with RNA and stimulate the decay of functional mRNA transcripts in vivo. Mol Microbiol. 2008;67(1):102–115. doi: 10.1111/j.1365-2958.2007.06028.x
  • Kime L, Jourdan SS, Stead JA, et al. Rapid cleavage of RNA by RNase E in the absence of 5’ monophosphate stimulation. Mol Microbiol. 2010;76(3):590–604. doi: 10.1111/j.1365-2958.2009.06935.x
  • Mackie GA Determinants in the rpsT mRNAs recognized by the 5’-sensor domain of RNase E. Mol Microbiol. 2013;89(2):388–402. doi: 10.1111/mmi.12283
  • Babitzke P, Kushner SR. The Ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene of Escherichia coli. Proc Natl Acad Sci. 1991;88(1):1–5. doi: 10.1073/pnas.88.1.1
  • Kaberdin VR, Walsh AP, Jakobsen T, et al. Enhanced cleavage of RNA mediated by an interaction between substrates and the arginine-rich domain of E. coli ribonuclease E. J Mol Biol. 2000;301(2):257–264. doi: 10.1006/jmbi.2000.3962
  • Redko Y, Tock MR, Adams CJ, et al. Determination of the catalytic parameters of the N-terminal half of Escherichia coli ribonuclease E and the identification of critical functional groups in RNA substrates. J Biol Chem. 2003;278(45):44001–44008. doi: 10.1074/jbc.M306760200
  • Anupama K, Leela JK, Gowrishankar J. Two pathways for RNase E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rho-dependent transcription termination. Mol Microbiol. 2011;82(6):1330–1348. doi: 10.1111/j.1365-2958.2011.07895.x
  • Schilder A, Görke B. Role of the 5′ end phosphorylation state for small RNA stability and target RNA regulation in bacteria. Nucleic Acids Res. 2023;51(10):5125–5143. doi: 10.1093/nar/gkad226
  • Zhang J-Y, Hess WR, Zhang C-C. “Life is short, and art is long”: RNA degradation in cyanobacteria and model bacteria. mLife. 2022;1(1):21–39. doi: 10.1002/mlf2.12015
  • Horie Y, Ito Y, Ono M, et al. Dark-induced mRNA instability involves RNase E/G-type endoribonuclease cleavage at the AU-box and SD sequences in cyanobacteria. Mol Genet Genomics. 2007;278(3):331–346. doi: 10.1007/s00438-007-0254-9
  • Sakurai I, Stazic D, Eisenhut M, et al. Positive regulation of psbA gene expression by cis-encoded antisense RNAs in Synechocystis sp. PCC 6803. Plant Physiol. 2012;160(2):1000–1010. doi: 10.1104/pp.112.202127
  • Georg J, Dienst D, Schürgers N, et al. The small regulatory RNA SyR1/PsrR1 controls photosynthetic functions in cyanobacteria. Plant Cell. 2014;26(9):3661–3679. doi: 10.1105/tpc.114.129767
  • Schein A, Sheffy-Levin S, Glaser F, et al. The RNase E/G-type endoribonuclease of higher plants is located in the chloroplast and cleaves RNA similarly to the E. coli enzyme. RNA. 2008;14(6):1057–1068. doi: 10.1261/rna.907608
  • Kaberdin VR, Miczak A, Jakobsen JS, et al. The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc Natl Acad Sci. 1998;95(20):11637–11642. doi: 10.1073/pnas.95.20.11637
  • Cavaiuolo M, Chagneau C, Laalami S, et al. Impact of RNase E and RNase J on global mRNA metabolism in the cyanobacterium Synechocystis PCC6803. Front Microbiol. 2020;11:1055. doi: 10.3389/fmicb.2020.01055
  • Hoffmann UA, Heyl F, Rogh SN, et al. Transcriptome-wide in vivo mapping of cleavage sites for the compact cyanobacterial ribonuclease E reveals insights into its function and substrate recognition. Nucleic Acids Res. 2021;49(22):13075–13091. doi: 10.1093/nar/gkab1161
  • Stazic D, Lindell D, Steglich C. Antisense RNA protects mRNA from RNase E degradation by RNA–RNA duplex formation during phage infection. Nucleic Acids Res. 2011;39(11):4890–4899. doi: 10.1093/nar/gkr037
  • Trautmann D, Voss B, Wilde A, et al. Microevolution in Cyanobacteria: Re-sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Res. 2012;19(6):435–448. doi: 10.1093/dnares/dss024
  • Rippka R, Deruelles J, Waterbury JB, et al. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology. 1979;111(1):1–61. doi: 10.1099/00221287-111-1-1
  • Köbler C, Schultz S-J, Kopp D, et al. The role of the Synechocystis sp. PCC 6803 homolog of the circadian clock output regulator RpaA in day–night transitions. Mol Microbiol. 2018;110(5):847–861. doi: 10.1111/mmi.14129
  • Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019
  • Innocenti N, Golumbeanu M, Fouquier d’Hérouël A, et al. Whole-genome mapping of 5′ RNA ends in bacteria by tagged sequencing: a comprehensive view in Enterococcus faecalis. RNA. 2015;21(5):1018–1030. doi: 10.1261/rna.048470.114
  • Afgan E, Baker D, Batut B, et al. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46(W1):W537–W544. doi: 10.1093/nar/gky379
  • Kaneko T, Sato S, Kotani H, et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996;3(3):109–136. doi: 10.1093/dnares/3.3.109
  • Kopf M, Klähn S, Scholz I, et al. Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res. 2014;21(5):527–539. doi: 10.1093/dnares/dsu018.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–15550. doi: 10.1073/pnas.0506580102
  • Yu G, Wang L-G, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J Integr Biol. 2012;16(5):284–287. doi: 10.1089/omi.2011.0118
  • Crooks GE, Hon G, Chandonia J-M, et al. WebLogo: A Sequence Logo Generator. Genome Res. 2004;14(6):1188–1190. doi: 10.1101/gr.849004
  • Lorenz R, Bernhart SH, Höner Zu Siederdissen C, et al. ViennaRNA package 2.0. Algorithms Mol Biol. 2011;6(1):26. doi: 10.1186/1748-7188-6-26
  • Carver T, Harris SR, Berriman M, et al. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinf. 2012;28(4):464–469. doi: 10.1093/bioinformatics/btr703
  • Madeira F, Park YM, Lee J, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47(W1):W636–W641. doi: 10.1093/nar/gkz268
  • Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinf. 2004;5(1):Article 113. doi: 10.1186/1471-2105-5-113
  • Waterhouse AM, Procter JB, Martin DMA, et al. Jalview version 2 - a multiple sequence alignment editor and analysis workbench. Bioinf. 2009;25(9):1189–1191. doi: 10.1093/bioinformatics/btp033.
  • Watanabe S, Stazic D, Georg J, et al. Regulation of RNase E during the UV-stress response in the cyanobacterium Synechocystis sp. PCC 6803. mLife. 2023;2(1) :43–57. doi: 10.1002/mlf2.12056
  • Ali N, Gowrishankar J. Cross-subunit catalysis and a new phenomenon of recessive resurrection in Escherichia coli RNase E. Nucleic Acids Res. 2020;48(2):847–861. doi: 10.1093/nar/gkz1152
  • Tsunekawa K, Shijuku T, Hayashimoto M, et al. Identification and characterization of the Na+/H+ antiporter NhaS3 from the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem. 2009;284(24):16513–16521. doi: 10.1074/jbc.M109.001875
  • Nagy C, Thiel K, Mulaku E, et al. Comparison of alternative integration sites in the chromosome and the native plasmids of the cyanobacterium Synechocystis sp. PCC 6803 in respect to expression efficiency and copy number. Microb Cell Factories. 2021;20(1):130. doi: 10.1186/s12934-021-01622-2
  • Mitschke J, Georg J, Scholz I, et al. An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci. 2011;108(5):2124–2129. doi: 10.1073/pnas.1015154108
  • Baumgartner D, Kopf M, Klähn S, et al. Small proteins in cyanobacteria provide a paradigm for the functional analysis of the bacterial micro-proteome. BMC Microbiol. 2016;16(1):Article 285. doi: 10.1186/s12866-016-0896-z
  • Huang D-D, Wang W-Y, Gough SP, et al. δ-aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Sci. 1984;225(4669):1482–1484. doi: 10.1126/science.6206568
  • Schön A, Krupp G, Gough S, et al. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nat. 1986;322(6076):281–284. doi: 10.1038/322281a0
  • O’Neill GP, Peterson DM, Schön A, et al. Formation of the chlorophyll precursor delta-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGlu species. J Bacteriol. 1988;170(9):3810–3816. doi: 10.1128/jb.170.9.3810-3816.1988
  • Ghora BK, Apirion D. Structural analysis and in vitro processing to p5 rRNA of a 9S RNA molecule isolated from an rne mutant of E. coli. Cell. 1978;15(3):1055–1066. doi: 10.1016/0092-8674(78)90289-1
  • Cormack RS, Mackie GA. Structural requirements for the processing of Escherichia coli 5 S ribosomal RNA by RNase E in vitro. J Mol Biol. 1992;228(4):1078–1090. doi: 10.1016/0022-2836(92)90316-C
  • Stazic D, Pekarski I, Kopf M, et al. A novel strategy for exploitation of host RNase E activity by a marine cyanophage. Genetics. 2016;203(3):1149–1159. doi: 10.1534/genetics.115.183475
  • Jain C, Belasco JG. RNase E autoregulates its synthesis by controlling the degradation rate of its own mRNA in Escherichia coli: unusual sensitivity of the rne transcript to RNase E activity. Genes Dev. 1995;9(1):84–96. doi: 10.1101/gad.9.1.84
  • Song K, Baumgartner D, Hagemann M, et al. Atpθ is an inhibitor of F0F1 ATP synthase to arrest ATP hydrolysis during low-energy conditions in cyanobacteria. Curr Biol. 2022;32(1):136–148.e5. doi: 10.1016/j.cub.2021.10.051
  • Song K, Hagemann M, Georg J, et al. Expression of the cyanobacterial F0F1 ATP synthase regulator AtpΘ depends on small DNA-binding proteins and differential mRNA stability. Microbiol Spectr. 2022;10(3):e02562–21. doi: 10.1128/spectrum.02562-21
  • de Porcellinis AJ, Klähn S, Rosgaard L, et al. The non-coding RNA Ncr0700/PmgR1 is required for photomixotrophic growth and the regulation of glycogen accumulation in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 2016;57(10):2091–2103. doi: 10.1093/pcp/pcw128
  • Klähn S, Bolay P, Wright PR, et al. A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria. Nucleic Acids Res. 2018;46(19):10082–10094. doi: 10.1093/nar/gky709
  • Bolay P, Rokhsareh R, Muro-Pastor MI, et al. The novel PII-interacting protein PirA controls flux into the cyanobacterial ornithine-ammonia cycle. MBio. 2021;12(2):e00229–21. doi: 10.1128/mBio.00229-21
  • García-Domínguez M, Reyes JC, Florencio FJ. NtcA represses transcription of gifA and gifB, genes that encode inhibitors of glutamine synthetase type I from Synechocystis sp. PCC 6803. Mol Microbiol. 2000;35(5):1192–1201. doi: 10.1046/j.1365-2958.2000.01789.x
  • Klähn S, Orf I, Schwarz D, et al. Integrated transcriptomic and metabolomic characterization of the low-carbon response using an ndhR mutant of Synechocystis sp. PCC 6803. Plant Physiol. 2015;169(3):1540–1556. doi: 10.1104/pp.114.254045
  • Song J-Y, Cho HS, Cho J-I, et al. Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. Proc Natl Acad Sci. 2011;108(26):10780. doi: 10.1073/pnas.1104242108
  • Lacey RF, Binder BM. Ethylene regulates the physiology of the cyanobacterium Synechocystis sp. PCC 6803 via an ethylene receptor. Plant Physiol. 2016;171(4):2798–2809. doi: 10.1104/pp.16.00602
  • Kuchmina E, Klähn S, Jakob A, et al. Ethylene production in Synechocystis sp. PCC 6803 promotes phototactic movement. Microbiology. 2017;163(12):1937–1945. doi: 10.1099/mic.0.000564
  • Kaneko T, Nakamura Y, Sasamoto S, et al. Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. DNA Res. 2003;10(5):221–228. do i:
  • Lin-Chao S, Cohen SN. The rate of processing and degradation of antisense RNAI regulates the replication of ColE1-type plasmids in vivo. Cell. 1991;65(7):1233–1242. doi: 10.1016/0092-8674(91)90018-T
  • Nishio S, Itoh T. Arginine-rich RNA binding domain and protein scaffold domain of RNase E are important for degradation of RNAI but not for that of the Rep mRNA of the ColE2 plasmid. Plasmid. 2009;62(2):83–87. doi: 10.1016/j.plasmid.2009.04.002
  • Tomcsányi T, Apirion D. Processing enzyme ribonuclease E specifically cleaves RNA I: An inhibitor of primer formation in plasmid DNA synthesis. J Mol Biol. 1985;185(4):713–720. doi: 10.1016/0022-2836(85)90056-7
  • Kaltenbrunner A, Reimann V, Hoffmann UA, et al. Regulation of pSYSA defense plasmid copy number in Synechocystis through RNase E and a highly transcribed asRNA. Front Microbiol. 2023;14. doi: 10.3389/fmicb.2023.1112307
  • Ghora BK, Apirion D. Identification of a novel RNA molecule in a new RNA processing mutant of Escherichia coli which contains 5 S rRNA sequences. J Biol Chem. 1979;254(6):1951–1956. doi: 10.1016/S0021-9258(17)37749-9
  • Régnier P, Hajnsdorf E Decay of mRNA encoding ribosomal protein S15 of Escherichia coli is initiated by an RNase E-dependent endonucleolytic cleavage that removes the 3’ stabilizing stem and loop structure. J Mol Biol. 1991;217(2):283–292. doi: 10.1016/0022-2836(91)90542-E
  • Walter M, Piepenburg K, Schöttler MA, et al. Knockout of the plastid RNase E leads to defective RNA processing and chloroplast ribosome deficiency. Plant J. 2010;64(5):851–863. doi: 10.1111/j.1365-313X.2010.04377.x
  • Riediger M, Spät P, Bilger R, et al. Analysis of a photosynthetic cyanobacterium rich in internal membrane systems via gradient profiling by sequencing (Grad-seq). Plant Cell. 2021;33(2):248–269. doi: 10.1093/plcell/koaa017
  • Hoyos M, Huber M, Förstner KU, et al. Gene autoregulation by 3’ UTR-derived bacterial small RNAs. Elife. 2020;9:e58836. doi: 10.7554/eLife.58836
  • Zhan J, Steglich C, Scholz I, et al. Inverse regulation of light harvesting and photoprotection is mediated by a 3’-end-derived sRNA in cyanobacteria. Plant Cell. 2021;33(2):358–380. doi: 10.1093/plcell/koaa030
  • Börner J, Friedrich T, Bartkuhn M, et al. Ribonuclease E strongly impacts bacterial adaptation to different growth conditions. RNA Biol. 2023;20(1):120–135. doi: 10.1080/15476286.2023.2195733
  • Rajib S, Deng L, Allison H-O, et al. Diurnal regulation of cellular processes in the cyanobacterium Synechocystis sp. strain PCC 6803: Insights from transcriptomic, fluxomic, and physiological analyses. MBio. 2016;7(3). doi: 10.1128/mbio.00464-16
  • Scheurer NM, Rajarathinam Y, Timm S, et al. Homologs of circadian clock proteins impact the metabolic switch between light and dark growth in the cyanobacterium Synechocystis sp. PCC 6803. Front Plant Sci. 2021;12:12. doi: 10.3389/fpls.2021.675227
  • Summerfield Tina C, Sherman Louis A. Role of sigma factors in controlling global gene expression in light/dark transitions in the cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol. 2007;189(21):7829–7840. doi: 10.1128/jb.01036-07
  • Li Z, Deutscher MP. RNase E plays an essential role in the maturation of Escherichia coli tRNA precursors. RNA. 2002;8(1):97–109. doi: 10.1017/S1355838202014929
  • Mohanty BK, Petree JR, Kushner SR. Endonucleolytic cleavages by RNase E generate the mature 3′ termini of the three proline tRNAs in Escherichia coli. Nucleic Acids Res. 2016;44(13):6350–6362. doi: 10.1093/nar/gkw517
  • Mohanty BK, Maples V, Kushner SR The C nucleotide at the mature 5’ end of the Escherichia coli proline tRNAs is required for the RNase E cleavage specificity at the 3’ terminus as well as functionality. Nucleic Acids Res. 2022;50(3):1639–1649. doi: 10.1093/nar/gkab1260
  • Kannangara CG, Gough SP, Oliver RP, et al. Biosynthesis of δ-aminolevulinate in greening barley leaves VI. Activation of glutamate by ligation to RNA. Carlsberg Res Commun. 1984;49(3):417. doi: 10.1007/BF02907783
  • Wang W-Y, Gough SP, Kannangara CG Biosynthesis of δ-aminolevulinate in greening barley leaves IV. Isolation of three soluble enzymes required for the conversion of glutamate to δ-aminolevulinate. Carlsberg Res Commun. 1981;46(4):243. doi: 10.1007/BF02906501
  • O’Neill GP, Söll D. Expression of the Synechocystis sp. strain PCC 6803 tRNA(Glu) gene provides tRNA for protein and chlorophyll biosynthesis. J Bacteriol. 1990;172(11):6363–6371. doi: 10.1128/jb.172.11.6363-6371.1990
  • Rieble S, Beale SI. Transformation of glutamate to delta-aminolevulinic acid by soluble extracts of Synechocystis sp. PCC 6803 and other oxygenic prokaryotes. J Biol Chem. 1988;263(18):8864–8871. doi: 10.1016/S0021-9258(18)68388-7
  • Hartmann RK, Gößringer M, Späth B, et al. The making of tRNAs and more – RNase P and tRNase Z. In: Condon C, editor. Progress in Molecular Biology and Translational Science. Cambridge, United States: Academic Press; 2009. p. 319–368.
  • Kirsebom LA, Svärd SG. Base pairing between Escherichia coli RNase P RNA and its substrate. EMBO J. 1994;13(20):4870–4876. doi: 10.1002/j.1460-2075.1994.tb06814.x
  • LaGrandeur TE, Hüttenhofer A, Noller HF, et al. Phylogenetic comparative chemical footprint analysis of the interaction between ribonuclease P RNA and tRNA. EMBO J. 1994;13(17):3945–3952. doi: 10.1002/j.1460-2075.1994.tb06710.x
  • Fingerhut C, Schön A Sequence and functional characterization of RNase P RNA from the chl a/b containing cyanobacterium Prochlorothrix hollandica. FEBS Lett. 1998;428(3):161–164. doi: 10.1016/s0014-5793(98)00519-5
  • Hess WR, Fingerhut C, Schön A. RNase P RNA from Prochlorococcus marinus: contribution of substrate domains to recognition by a cyanobacterial ribozyme. FEBS Lett. 1998;431(2):138–142. doi: 10.1016/s0014-5793(98)00729-7