991
Views
0
CrossRef citations to date
0
Altmetric
Review

RNA nanostructures for targeted drug delivery and imaging

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-19 | Accepted 04 Mar 2024, Published online: 31 Mar 2024

References

  • Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–480. doi: 10.1038/nrc2394
  • Böhmer VI, Szymanski W, Feringa BL, et al. Multivalent Probes in Molecular Imaging: Reality or Future? Trends Mol Med. 2021;27(4):379–393. doi: 10.1016/j.molmed.2020.12.006
  • Tan YY, Yap PK, Xin Lim GL, et al. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem Biol Interact. 2020;329:109221. doi: 10.1016/j.cbi.2020.109221
  • Zhu W, Wei Z, Han C, et al. Nanomaterials as promising theranostic tools in nanomedicine and their applications in clinical disease diagnosis and treatment. Nanomaterials. 2021;11(12):3346. doi: 10.3390/nano11123346
  • Dilliard SA, Siegwart DJ. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat Rev Mater. 2023;8(4):282–300. doi: 10.1038/s41578-022-00529-7
  • Kon E, Ad-El N, Hazan-Halevy I, et al. Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects. Nat Rev Clin Oncol. 2023;20(11):739–754. doi: 10.1038/s41571-023-00811-9
  • Grabow WW, Jaeger L. RNA self-assembly and RNA nanotechnology. Acc Chem Res. 2014;47(6):1871–1880. doi: 10.1021/ar500076k
  • Guo P. RNA nanotechnology and therapeutics. In: Guo P, Haque F, editors. Vol. 5. Boca Raton, Florida: CRC Press; 2013.
  • Jones CP, Ferré-D’Amaré AR. RNA quaternary structure and global symmetry. Trends Biochem Sci. 2015;40(4):211–220. doi: 10.1016/j.tibs.2015.02.004
  • Seeman NC, Sleiman HF. DNA nanotechnology. Nat Rev Mater. 2017;3(1):17068. doi: 10.1038/natrevmats.2017.68
  • Jiang S, Ge Z, Mou S, et al. Designer DNA nanostructures for therapeutics. Chem. 2021;7(5):1156–1179. doi: 10.1016/j.chempr.2020.10.025
  • Wilner OI, Yesodi D, Weizmann Y. RNA Nanostructures: From Structure to Function. Bioconjug Chem. 2023;34(1):30–36. doi: 10.1021/acs.bioconjchem.2c00417
  • Albanese A, Tang PS, Chan WCW The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14(1):1–16. doi: 10.1146/annurev-bioeng-071811-150124
  • Madhanagopal BR, Zhang S, Demirel E, et al. DNA nanocarriers: programmed to deliver. Trends Biochem Sci. 2018;43(12):997–1013. doi: 10.1016/j.tibs.2018.09.010
  • Roberts TC, Langer R, Wood MJA Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10): 673–694. 10.1038/s41573-020-0075-7
  • Bramsen JB, Kjems J. Development of therapeutic-grade small interfering RNAs by chemical engineering. Front Genet. 2012;3:154. doi: 10.3389/fgene.2012.00154
  • Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5(1):101. doi: 10.1038/s41392-020-0207-x
  • Lee Y, Urban JH, Xu L, et al. 2’Fluoro modification differentially modulates the ability of RNAs to activate pattern recognition receptors. Nucleic Acid Ther. 2016;26(3):173–182. doi: 10.1089/nat.2015.0575
  • Abdelmawla S, Guo S, Zhang L, et al. Pharmacological characterization of chemically synthesized monomeric phi29 pRNA nanoparticles for systemic delivery. Mol Ther. 2011;19(7):1312–1322. doi: 10.1038/mt.2011.35
  • Afonin KA, Kireeva M, Grabow WW, et al. Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRnas. Nano Lett. 2012;12(10):5192–5195. doi: 10.1021/nl302302e
  • Veedu RN, Vester B, Wengel J. In vitro incorporation of LNA Nucleotides. Nucleosides Nucleotides Nucleic Acids. 2007;26(8–9):1207–1210. doi: 10.1080/15257770701527844
  • Sousa R, Padilla R. A mutant T7 RNA polymerase as a DNA polymerase. EMBO J. 1995;14(18):4609–4621. doi: 10.1002/j.1460-2075.1995.tb00140.x
  • Meyer AJ. Transcription yield of fully 2’-modified RNA can be increased by the addition of thermostabilizing mutations to T7 RNA polymerase mutants. Nucleic Acids Res. 2015;43(15):7480–7488. doi: 10.1093/nar/gkv734
  • Padilla R. A Y639F/H784A T7 RNA polymerase double mutant displays superior properties for synthesizing RNAs with non-canonical NTPs. Nucleic Acids Res. 2002;30(24):138e–138. doi: 10.1093/nar/gnf138
  • Eckstein F Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 2014;24(6):374–387. 10.1089/nat.2014.0506
  • Jurk M. Immunostimulatory potential of silencing RNAs can Be mediated by a non-uridine-rich toll-like receptor 7 motif. Nucleic Acid Ther. 2011;21(3):201–214. 10.1089/nat.2011.0298
  • Frazier KS. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol Pathol. 2015;43(1):78–89. doi: 10.1177/0192623314551840
  • Crooke ST, Vickers TA, Liang X. Phosphorothioate modified oligonucleotide–protein interactions. Nucleic Acids Res. 2020;48(10):5235–5253. doi: 10.1093/nar/gkaa299
  • Echevarría L. Evaluating the impact of variable phosphorothioate content in tricyclo-DNA antisense oligonucleotides in a duchenne muscular dystrophy mouse model. Nucleic Acid Ther. 2019;29(3):148–160. doi: 10.1089/nat.2018.0773
  • Usher DA. On the mechanism of ribonuclease action. Proc Natl Acad Sci. 1969;62(3):661–667. doi: 10.1073/pnas.62.3.661
  • Elm n J. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 2005;33(1):439–447. doi: 10.1093/nar/gki193
  • Karikó K, Buckstein M, Ni H, et al. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the Evolutionary Origin of RNA. Immunity. 2005;23(2):165–175. doi: 10.1016/j.immuni.2005.06.008
  • Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields Superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–1840. doi: 10.1038/mt.2008.200
  • Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol. 2016;16(9):566–580. doi: 10.1038/nri.2016.78
  • Ernst L, Casals E, Italiani P, et al. The interactions between nanoparticles and the Innate Immune System from a nanotechnologist perspective. Nanomaterials. 2021;11(11):2991. doi: 10.3390/nano11112991
  • Guo S, Li H, Ma M, et al. Size, shape, and sequence-dependent immunogenicity of RNA nanoparticles. Mol Ther Nucleic Acids. 2017;9:399–408. doi: 10.1016/j.omtn.2017.10.010
  • Jasinski D, Haque F, Binzel DW, et al. Advancement of the emerging field of RNA nanotechnology. ACS Nano. 2017;11(2):1142–1164. doi: 10.1021/acsnano.6b05737
  • Johnson MB, Halman JR, Miller DK, et al. The immunorecognition, subcellular compartmentalization, and physicochemical properties of nucleic acid nanoparticles can be controlled by composition modification. Nucleic Acids Res. 2020;48(20):11785–11798. doi: 10.1093/nar/gkaa908
  • Hong E, Halman JR, Shah AB, et al. Structure and composition define immunorecognition of nucleic acid nanoparticles. Nano Lett. 2018;18(7):4309–4321. doi: 10.1021/acs.nanolett.8b01283
  • Pandey PR, Young KH, Kumar D, et al. RNA-mediated immunotherapy regulating tumor immune microenvironment: next wave of cancer therapeutics. Mol Cancer. 2022;21(1):58. doi: 10.1186/s12943-022-01528-6
  • Rodriguez PL. Minimal ‘self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;80(339):971–975. doi: 10.1126/science.1229568
  • Lundin KE. Biological activity and biotechnological aspects of locked nucleic acids. In: Theodore F, Jay CD, Stephen FG, editors. Advances in genetics. Vol. 82. Cambridge, Massachusetts: Academic Press; 2013. p. 47–107.
  • Schyth BD, Bramsen JB, Pakula MM, et al. In vivo screening of modified siRnas for non-specific antiviral effect in a small fish model: number and localization in the strands are important. Nucleic Acids Res. 2012;40(10):4653–4665. doi: 10.1093/nar/gks033
  • Han X, Xu K, Taratula O, et al. Applications of nanoparticles in biomedical imaging. Nanoscale. 2019;11(3):799–819. doi: 10.1039/C8NR07769J
  • Mahmoudi M, Landry MP, Moore A, et al. The protein corona from nanomedicine to environmental science. Nat Rev Mater. 2023;8(7):422–438. doi: 10.1038/s41578-023-00552-2
  • Walkey CD, Chan WCW Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41(7):2780–2799. doi: 10.1039/C1CS15233E
  • Mirshafiee V, Kim R, Mahmoudi M, et al. The importance of selecting a proper biological milieu for protein corona analysis in vitro: human plasma versus human serum. Int J Biochem Cell Biol. 2016;75:188–195. doi: 10.1016/j.biocel.2015.11.019
  • Blume JE, Manning WC, Troiano G, et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat Commun. 2020;11(1):3662. doi: 10.1038/s41467-020-17033-7
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951. doi: 10.1038/nbt.3330
  • Chen D, Ganesh S, Wang W, et al. Protein corona-enabled systemic delivery and targeting of nanoparticles. AAPS J. 2020;22(4):83. doi: 10.1208/s12248-020-00464-x
  • Wang B, He X, Zhang Z, et al. Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res. 2013;46(3):761–769. doi: 10.1021/ar2003336
  • Kratz F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132(3):171–183. doi: 10.1016/j.jconrel.2008.05.010
  • Pinals RL, Chio L, Ledesma F, et al. Engineering at the nano-bio interface: harnessing the protein corona towards nanoparticle design and function. Analyst. 2020;145(15):5090–5112. doi: 10.1039/D0AN00633E
  • Hvam ML, Cai Y, Dagnæs-Hansen F, et al. Fatty Acid-Modified Gapmer Antisense Oligonucleotide and Serum Albumin Constructs for Pharmacokinetic Modulation. Mol Ther. 2017;25(7):1710–1717. doi: 10.1016/j.ymthe.2017.05.009
  • Irby D, Du C, Li F. Lipid–Drug Conjugate for Enhancing Drug Delivery. Mol Pharm. 2017;14(5):1325–1338. doi: 10.1021/acs.molpharmaceut.6b01027
  • Dinesen A, Andersen VL, Elkhashab M, et al. An Albumin-Holliday junction biomolecular modular design for programmable multifunctionality and prolonged circulation. Bioconjug Chem. 2024;35(2):214–222. doi: 10.1021/acs.bioconjchem.3c00491
  • Du B, Yu M, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater. 2018;3(10):358–374. doi: 10.1038/s41578-018-0038-3
  • Gao H, He Q. The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior. Expert Opin Drug Deliv. 2014;11(3):409–420. doi: 10.1517/17425247.2014.877442
  • Jasinski DL, Li H, Guo P. The effect of size and shape of RNA nanoparticles on biodistribution. Mol Ther. 2018;26(3):784–792. doi: 10.1016/j.ymthe.2017.12.018
  • Lu X, Zhang K. Pegylation of therapeutic oligonucletides: from linear to highly branched PEG architectures. Nano Res. 2018;11(10):5519–5534. doi: 10.1007/s12274-018-2131-8
  • Osborn MF, Khvorova A. improving siRNA delivery in vivo through lipid conjugation. Nucleic Acid Ther. 2018;28(3):128–136. doi: 10.1089/nat.2018.0725
  • Gupta A, Andresen JL, Manan RS, et al. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev. 2021;178:113834. doi: 10.1016/j.addr.2021.113834
  • Hermanson GT. The reactions of bioconjugation. Bioconjugate Tech. 2013;229–258. doi: 10.1016/B978-0-12-382239-0.00003-0
  • Fontaine SD, Reid R, Robinson L, et al. Long-term stabilization of maleimide–thiol conjugates. Bioconjug Chem. 2015;26(1):145–152. doi: 10.1021/bc5005262
  • Rostovtsev VV, Green LG, Fokin VV, et al. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and Terminal Alkynes. Angew Chemie Int Ed. 2002;41(14):2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4
  • Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to Azides. J Org Chem. 2002;67(9):3057–3064. doi: 10.1021/jo011148j
  • Kim E, Koo H. Biomedical applications of copper-free click chemistry: in vitro, in vivo, and ex vivo. Chem Sci. 2019;10(34):7835–7851. doi: 10.1039/C9SC03368H
  • Li L, Zhang Z. Development and applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a bioorthogonal reaction. Molecules. 2016;21(10):1393. doi: 10.3390/molecules21101393
  • Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3 + 2] Azide−Alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126(46):15046–15047. doi: 10.1021/ja044996f
  • Kang K, Park J, Kim E. Tetrazine ligation for chemical proteomics. Proteome Sci. 2016;15(1):15. doi: 10.1186/s12953-017-0121-5
  • Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels–Alder reactions in chemical biology. Chem Soc Rev. 2017;46(16):4895–4950. doi: 10.1039/C7CS00184C
  • Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov. 2015;14(3):203–219. doi: 10.1038/nrd4519
  • Sun W, Lee J, Zhang S, et al. Engineering precision medicine. Adv Sci. 2019;6(1):1801039. doi: 10.1002/advs.201801039
  • Miladinova D. Molecular imaging of HER2 receptor: targeting HER2 for imaging and therapy in nuclear medicine. Front Mol Biosci. 2023;10:1144817. doi: 10.3389/fmolb.2023.1144817
  • Scaranti M, Cojocaru E, Banerjee S, et al. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol. 2020;17(6):349–359. doi: 10.1038/s41571-020-0339-5
  • Wang Y, Tong Z, Zhang W, et al. FDA-Approved and emerging next generation predictive biomarkers for immune checkpoint inhibitors in cancer patients. Front Oncol. 2021;11:683419. doi: 10.3389/fonc.2021.683419
  • Batis N, Brooks JM, Payne K, et al. Lack of predictive tools for conventional and targeted cancer therapy: barriers to biomarker development and clinical translation. Adv Drug Deliv Rev. 2021;176:113854. doi: 10.1016/j.addr.2021.113854
  • Sioud M. Phage display libraries: from binders to targeted drug delivery and human therapeutics. Mol Bio Technol. 2019;61(4):286–303. doi: 10.1007/s12033-019-00156-8
  • Alkhamis O, Xiao Y. Systematic study of in vitro selection stringency reveals how to enrich high-affinity aptamers. J Am Chem Soc. 2023;145(1):194–206. doi: 10.1021/jacs.2c09522
  • Xu Z, Shi T, Mo F, et al. Programmable assembly of multivalent DNA‐protein superstructures for tumor imaging and targeted therapy. Angew Chemie Int Ed. 2022;61(44):e202211505. doi: 10.1002/anie.202211505
  • Tomita M, Tsumoto K. Hybridoma technologies for antibody production. Immunotherapy. 2011;3(3):371–380. doi: 10.2217/imt.11.4
  • Parola C, Neumeier D, Reddy ST. Integrating high‐throughput screening and sequencing for monoclonal antibody discovery and engineering. Immunology. 2018;153(1):31–41. doi: 10.1111/imm.12838
  • Younes A, Bartlett NL, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363(19):1812–1821. doi: 10.1056/NEJMoa1002965
  • Baselga J. Clinical trials of Herceptin® (trastuzumab). Eur J Cancer. 2001;37:18–24. doi: 10.1016/S0959-8049(00)00404-4
  • Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–337. doi: 10.1038/nrd.2016.268
  • Brückner M, Simon J, Landfester K, et al. The conjugation strategy affects antibody orientation and targeting properties of nanocarriers. Nanoscale. 2021;13(21):9816–9824. doi: 10.1039/D0NR08191D
  • Simon J, Fichter M, Kuhn G, et al. Achieving dendritic cell subset-specific targeting in vivo by site-directed conjugation of targeting antibodies to nanocarriers. Nano Today. 2022;43:101375. doi: 10.1016/j.nantod.2022.101375
  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82(1):775–797. doi: 10.1146/annurev-biochem-063011-092449
  • Teodori L, Omer M, Märcher A, et al. Site-specific nanobody-oligonucleotide conjugation for super-resolution imaging. J Biol Methods. 2022;9(1):e159. doi: 10.14440/jbm.2022.381
  • Pleiner T, Bates M, Trakhanov S, et al. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. Elife. 2015;4. doi: 10.7554/eLife.11349
  • Fan J, Zhuang X, Yang X, et al. A multivalent biparatopic EGFR-targeting nanobody drug conjugate displays potent anticancer activity in solid tumor models. Signal Transduct Target Ther. 2021;6(1):320. doi: 10.1038/s41392-021-00666-5
  • Nuhn L, Bolli E, Massa S, et al. Targeting protumoral tumor-associated macrophages with nanobody-functionalized nanogels through strain promoted azide alkyne cycloaddition ligation. Bioconjug Chem. 2018;29(7):2394–2405. doi: 10.1021/acs.bioconjchem.8b00319
  • Lu Y, Yang J, Sega E. Issues related to targeted delivery of proteins and peptides. AAPS J. 2006;8(3):E466–E478. doi: 10.1208/aapsj080355
  • Ray P, White RR. Aptamers for targeted drug delivery. Pharmaceuticals. 2010;3(6):1761–1778. doi: 10.3390/ph3061761
  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–822. doi: 10.1038/346818a0
  • Ng EWM. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123–132. doi: 10.1038/nrd1955
  • Jaffe GJ, Westby K, Csaky KG, et al. C5 inhibitor avacincaptad pegol for geographic atrophy due to age-related macular degeneration. Ophthalmol. 2021;128(4):576–586. doi: 10.1016/j.ophtha.2020.08.027
  • Valero J, Civit L, Dupont DM, et al. A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry. Proc Natl Acad Sci. 2021;118(50):e2112942118. doi: 10.1073/pnas.2112942118
  • Rockey WM, Huang L, Kloepping KC, et al. Synthesis and radiolabeling of chelator–RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. Bioorg Med Chem. 2011;19(13):4080–4090. doi: 10.1016/j.bmc.2011.05.010
  • Rana A, Bhatnagar S. Advancements in folate receptor targeting for anti-cancer therapy: a small molecule-drug conjugate approach. Bioorg Chem. 2021;112:104946. doi: 10.1016/j.bioorg.2021.104946
  • Low PS, Kularatne SA. Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol. 2009;13(3):256–262. doi: 10.1016/j.cbpa.2009.03.022
  • Cui H, Zhu X, Li S, et al. Liver-targeted delivery of oligonucleotides with N-Acetylgalactosamine conjugation. ACS Omega. 2021;6(25):16259–16265. doi: 10.1021/acsomega.1c01755
  • Sardh E, Harper P. RNAi therapy with givosiran significantly reduces attack rates in acute intermittent porphyria. J Intern Med. 2022;291(5):593–610. doi: 10.1111/joim.13443
  • Li H-J, Du J-Z, Liu J, et al. Smart superstructures with Ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano. 2016;10(7):6753–6761. doi: 10.1021/acsnano.6b02326
  • Phung CD, Tran TH, Pham LM, et al. Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia. J Control Release. 2020;324:413–429. doi: 10.1016/j.jconrel.2020.05.029
  • Refaat A, Yap ML, Pietersz G, et al. In vivo fluorescence imaging: success in preclinical imaging paves the way for clinical applications. J Nano bio technol. 2022;20(1):450. doi: 10.1186/s12951-022-01648-7
  • Feng Z, Tang T, Wu T, et al. Perfecting and extending the near-infrared imaging window. Light: Sci Appl. 2021;10(1):197. doi: 10.1038/s41377-021-00628-0
  • del Rosal B, Villa I, Jaque D, et al. In vivo autofluorescence in the biological windows: the role of pigmentation. J Biophoto. 2016;9(10):1059–1067. doi: 10.1002/jbio.201500271
  • Kovar JL, Simpson MA, Schutz-Geschwender A, et al. A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models. Anal Biochem. 2007;367(1):1–12. doi: 10.1016/j.ab.2007.04.011
  • Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med. 2003;9(1):123–128. doi: 10.1038/nm0103-123
  • Gong X, Wang H, Li R, et al. A smart multiantenna gene theranostic system based on the programmed assembly of hypoxia-related siRnas. Nat Commun. 2021;12(1):3953. doi: 10.1038/s41467-021-24191-9
  • Tang H, Xue Y, Li B, et al. Membrane-camouflaged supramolecular nanoparticles for co-delivery of chemotherapeutic and molecular-targeted drugs with siRNA against patient-derived pancreatic carcinoma. Acta Pharm Sin B. 2022;12(8):3410–3426. doi: 10.1016/j.apsb.2022.02.007
  • Dohmen C, Edinger D, Fröhlich T, et al. Nanosized Multifunctional polyplexes for receptor-mediated SiRNA delivery. ACS Nano. 2012;6(6):5198–5208. doi: 10.1021/nn300960m
  • Karlsson J, Rui Y, Kozielski KL, et al. Engineered nanoparticles for systemic siRNA delivery to malignant brain tumours. Nanoscale. 2019;11(42):20045–20057. doi: 10.1039/C9NR04795F
  • Antaris AL, Chen H, Cheng K, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15(2):235–242. doi: 10.1038/nmat4476
  • Xu C, Zhang K, Yin H, et al. 3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution. Nano Res. 2020;13(12):3241–3247. doi: 10.1007/s12274-020-2996-1
  • Jasinski DL, Yin H, Li Z, et al. Hydrophobic effect from conjugated chemicals or drugs on in vivo biodistribution of RNA nanoparticles. Hum Gene Ther. 2018;29(1):77–86. doi: 10.1089/hum.2017.054
  • Debie P, Van Quathem J, Hansen I, et al. Effect of Dye and conjugation chemistry on the biodistribution profile of near-infrared-labeled nanobodies as tracers for image-guided surgery. Mol Pharm. 2017;14(4):1145–1153. doi: 10.1021/acs.molpharmaceut.6b01053
  • Zhao Y, Ye Y, Zhou X, et al. Photosensitive fluorescent dye contributes to phototoxicity and inflammatory responses of dye-doped silica nanoparticles in cells and mice. Theranostics. 2014;4(4):445–459. doi: 10.7150/thno.7653
  • Jahnke K, Grubmüller H, Igaev M, et al. Choice of fluorophore affects dynamic DNA nanostructures. Nucleic Acids Res. 2021;49(7):4186–4195. doi: 10.1093/nar/gkab201
  • Hong G, Antaris AL, Dai H. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng. 2017;1(1):0010. doi: 10.1038/s41551-016-0010
  • Frangioni J. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 2003;7(5):626–634. doi: 10.1016/j.cbpa.2003.08.007
  • Pérez-Medina C, Teunissen AJP, Kluza E, et al. Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev. 154-155, 123–141 (2020). doi: 10.1016/j.addr.2020.07.017
  • Nolte T, Gross-Weege N, Schulz V (Hybrid) SPECT and PET technologies. In: Schober O, Kiessling F, Debus J, editors. Recent results in cancer research. Vol. 216. Cham, Switzerland: Springer; 2020. p. 111–133.
  • Hassanzadeh L, Chen S, Veedu R. Radiolabeling of nucleic acid aptamers for highly sensitive disease-specific molecular imaging. Pharmaceuticals. 2018;11(4):106. doi: 10.3390/ph11040106
  • Barca C, Griessinger C, Faust A, et al. Expanding theranostic radiopharmaceuticals for tumor diagnosis and therapy. Pharmaceuticals. 2021;15(1):13. doi: 10.3390/ph15010013
  • Pellico J, Gawne PJ, TM de Rosales R Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev. 2021;50(5):3355–3423. doi: 10.1039/D0CS00384K
  • Correa CR, Barros ALBD, Ferreira CDA, et al. Aptamers directly radiolabeled with technetium-99m as a potential agent capable of identifying carcinoembryonic antigen (CEA) in tumor cells T84. Bioorg Med Chem Lett. 2014;24(8):1998–2001. doi: 10.1016/j.bmcl.2014.02.048
  • Wang Y, Liu G, Hnatowich DJ. Methods for MAG3 conjugation and 99mTc radiolabeling of biomolecules. Nat Protoc. 2006;1(3):1477–1480. doi: 10.1038/nprot.2006.262
  • Roivainen A, Tolvanen T, Salomäki S, et al. 68Ga-labeled oligonucleotides for in vivo imaging with PET. J Nucl Med. 2004;45(2):347–355.
  • Kim HJ, Park JY, Lee TS, et al. PET imaging of HER2 expression with an 18F-fluoride labeled aptamer. PLoS One. 2019;14(1):e0211047. doi: 10.1371/journal.pone.0211047
  • Hedberg E, Långström B, Olsen CE, et al. Synthesis of 4-([18F]Fluoromethyl)phenyl isothiocyanate and its use in Labelling oligonucleotides. Acta Chem Scand. 1997;51:1236–1240. doi: 10.3891/acta.chem.scand.51-1236
  • de Vries EFJ, Vroegh J, Elsinga PH, et al. Evaluation of fluorine-18-labeled alkylating agents as potential synthons for the labeling of oligonucleotides. Appl Radiat Isot. 2003;58:469–476. doi: 10.1016/S0969-8043(03)00022-8
  • Liu Y, Liu G, Hnatowich D. A brief review of chelators for radiolabeling oligomers. Materials. 2010;3(5):3204–3217. doi: 10.3390/ma3053204
  • Edelmann MR. Radiolabelling small and biomolecules for tracking and monitoring. RSC Adv. 2022;12(50):32383–32400. doi: 10.1039/D2RA06236D
  • Bareford L, Swaan P. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59(8):748–758. doi: 10.1016/j.addr.2007.06.008
  • Dowdy SF, Setten RL, Cui X-S, et al. Delivery of RNA therapeutics: the great endosomal escape! nucleic acid ther. Nucleic Acid Ther. 2022;32(5):361–368. doi: 10.1089/nat.2022.0004
  • Tawiah K, Porciani D, Burke D. Toward the selection of cell targeting aptamers with extended biological functionalities to facilitate endosomal escape of cargoes. Biomedicines. 2017;5(4):51. doi: 10.3390/biomedicines5030051
  • Dang Y, van Heusden C, Nickerson V, et al. Enhanced delivery of peptide-morpholino oligonucleotides with a small molecule to correct splicing defects in the lung. Nucleic Acids Res. 2021;49(11):6100–6113. doi: 10.1093/nar/gkab488
  • Varkouhi AK, Scholte M, Storm G, et al. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011;151(3):220–228. doi: 10.1016/j.jconrel.2010.11.004
  • Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci. 1995;92(16):7297–7301. doi: 10.1073/pnas.92.16.7297
  • Porciani D, Cardwell LN, Tawiah KD, et al. Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines. Nat Commun. 2018;9(1):2283. doi: 10.1038/s41467-018-04691-x
  • Xu L, Anchordoquy T. Clinical trials and translational medicine commentary: drug delivery trends in clinical trials and translational medicine: challenges and opportunities in the delivery of Nucleic acid-based therapeutics. J Pharm Sci. 2011;100(1):38–52. doi: 10.1002/jps.22243
  • Adepu S, Ramakrishna S. Controlled drug delivery systems: Current status and future directions. Molecules. 2021;26(19):5905. doi: 10.3390/molecules26195905
  • Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23(1):20. doi: 10.1186/s40824-019-0166-x
  • Zeng C, Zhang C, Walker PG, et al. Formulation and delivery technologies for mRNA vaccines. In: Yu D, Petsch B, editors. Current topics in microbiology and immunology. Vol. 440 Cham, Switzerland: Springer, Cham; 2020. p. 71–110.
  • Muñoz NM, Williams M, Dixon K, et al. Influence of injection technique, drug formulation and tumor microenvironment on intratumoral immunotherapy delivery and efficacy. J Immunother Cancer. 2021;9(2):e001800. doi: 10.1136/jitc-2020-001800
  • De Lombaerde E, De Wever O, De Geest BG. Delivery routes matter: safety and efficacy of intratumoral immunotherapy. Biochim Biophys Acta - Rev Cancer. 2021;1875(2):188526. doi: 10.1016/j.bbcan.2021.188526
  • Kim J, Song S, Gwak M, et al. Micro-syringe chip-guided intratumoral administration of lipid nanoparticles for targeted anticancer therapy. Biomater Res. 2023;27(1):102. doi: 10.1186/s40824-023-00440-4
  • McNamara JO, Andrechek ER, Wang Y, et al. Cell type–specific delivery of siRnas with aptamer-siRNA chimeras. Nat Biotechnol. 2006;24(8):1005–1015. doi: 10.1038/nbt1223
  • Dassie JP. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol. 2009;27(9):839–846. doi: 10.1038/nbt.1560
  • Liu HY, Yu X, Liu H, et al. Co-targeting EGFR and survivin with a bivalent aptamer-dual siRNA chimera effectively suppresses prostate cancer. Sci Rep. 2016;6(1):30346. doi: 10.1038/srep30346
  • Esposito CL, Cerchia L, Catuogno S, et al. Multifunctional aptamer-miRNA conjugates for targeted cancer therapy. Mol Ther. 2014;22(6):1151–1163. doi: 10.1038/mt.2014.5
  • Powell Gray B, Kelly L, Ahrens DP, et al. Tunable cytotoxic aptamer–drug conjugates for the treatment of prostate cancer. Proc Natl Acad Sci. 2018;115(18):4761–4766. doi: 10.1073/pnas.1717705115
  • Cheng S, Jacobson O, Zhu G, et al. PET imaging of EGFR expression using an 18F-labeled RNA aptamer. Eur J Nucl Med Mol Imaging. 2019;46(4):948–956. doi: 10.1007/s00259-018-4105-1
  • Yu X, Ghamande S, Liu H, et al. Targeting EGFR/HER2/HER3 with a three-in-one aptamer-siRNA chimera confers superior activity against HER2+ breast cancer. Mol Ther Nucleic Acids. 2018;10:317–330. doi: 10.1016/j.omtn.2017.12.015
  • Wang T, Gantier MP, Xiang D, et al. EpCAM aptamer-mediated survivin silencing sensitized cancer stem cells to doxorubicin in a breast cancer model. Theranostics. 2015;5(12):1456–1472. doi: 10.7150/thno.11692
  • Herrmann A, Priceman SJ, Kujawski M, et al. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J Clin Invest. 2014;124(7):2977–2987. doi: 10.1172/JCI73174
  • Ni X, Zhang Y, Ribas J, et al. Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. J Clin Invest. 2011;121(6):2383–2390. doi: 10.1172/JCI45109
  • Soldevilla MM, Villanueva H, Bendandi M, et al. 2-fluoro-RNA oligonucleotide CD40 targeted aptamers for the control of B lymphoma and bone-marrow aplasia. Biomaterials. 2015;67:274–285. doi: 10.1016/j.biomaterials.2015.07.020
  • Kelly L, Maier KE, Yan A, et al. A comparative analysis of cell surface targeting aptamers. Nat Commun. 2021;12(1):6275. doi: 10.1038/s41467-021-26463-w
  • Omer M, Andersen VL, Nielsen JS, et al. Improved cancer targeting by multimerizing aptamers on nanoscaffolds. Mol Ther Nucleic Acids. 2020;22:994–1003. doi: 10.1016/j.omtn.2020.10.013
  • Kim D-H, Seo J-M, Shin K-J, et al. Design and clinical developments of aptamer-drug conjugates for targeted cancer therapy. Biomater Res. 2021;25(1):42. doi: 10.1186/s40824-021-00244-4
  • Zhu G, Zheng J, Song E, et al. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci. 2013;110(20):7998–8003. doi: 10.1073/pnas.1220817110
  • Zhao N, Pei S-N, Qi J, et al. Oligonucleotide aptamer-drug conjugates for targeted therapy of acute myeloid leukemia. Biomaterials. 2015;67:42–51. doi: 10.1016/j.biomaterials.2015.07.025
  • Jeong HY, Kim H, Lee M, et al. Development of HER2-specific aptamer-drug conjugate for breast cancer therapy. Int J Mol Sci. 2020;21(24):9764. doi: 10.3390/ijms21249764
  • Song W, Song Y, Li Q, et al. Advances in aptamer-based nuclear imaging. Eur J Nucl Med Mol Imaging. 2022;49(8):2544–2559. doi: 10.1007/s00259-022-05782-0
  • Dassie JP, Hernandez LI, Thomas GS, et al. Targeted inhibition of prostate cancer metastases with an RNA aptamer to prostate-specific membrane antigen. Mol Ther. 2014;22(11):1910–1922. doi: 10.1038/mt.2014.117
  • Noaparast Z, Hosseinimehr SJ, Piramoon M, et al. Tumor targeting with a 99m tc-labeled AS1411 aptamer in prostate tumor cells. J Drug Target. 2015;23(6):497–505. doi: 10.3109/1061186X.2015.1009075
  • Jiao Y. Molecular imaging and treatment of PSMA-positive prostate cancer with 99mTc radiolabeled aptamer-siRNA chimeras. Nucl Med Biol. 2022;104–105:28–37. doi: 10.1016/j.nucmedbio.2021.11.003
  • Guo P, Zhang C, Chen C, et al. Inter-RNA interaction of phage φ29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell. 1998;2(1):149–155. doi: 10.1016/S1097-2765(00)80124-0
  • Binzel DW, Shu Y, Li H, et al. Specific delivery of MiRNA for high efficient inhibition of prostate cancer by RNA nanotechnology. Mol Ther. 2016;24(7):1267–1277. doi: 10.1038/mt.2016.85
  • Shu D, Li H, Shu Y, et al. Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano. 2015;9(10):9731–9740. doi: 10.1021/acsnano.5b02471
  • Yin H, Xiong G, Guo S, et al. Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133. Mol Ther. 2019;27(7):1252–1261. doi: 10.1016/j.ymthe.2019.04.018
  • Zhang Y, Leonard M, Shu Y, et al. Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional pRNA nanoparticles. ACS Nano. 2017;11(1):335–346. doi: 10.1021/acsnano.6b05910
  • Yang L, Li Z, Binzel DW, et al. Targeting oncogenic KRAS in non-small cell lung cancer with EGFR aptamer-conjugated multifunctional RNA nanoparticles. Mol Ther Nucleic Acids. 2023;33:559–571. doi: 10.1016/j.omtn.2023.07.027
  • Afonin KA, Viard M, Koyfman AY, et al. Multifunctional RNA nanoparticles. Nano Lett. 2014;14(10):5662–5671. doi: 10.1021/nl502385k
  • Li H, Zhang K, Pi F, et al. Controllable self‐assembly of RNA tetrahedrons with precise shape and size for cancer targeting. Adv Mater. 2016;28(34):7501–7507. doi: 10.1002/adma.201601976
  • Kim H, Jeong J, Kim D, et al. Bubbled RNA‐based cargo for boosting RNA interference. Adv Sci. 2017;4(8):1600523. doi: 10.1002/advs.201600523
  • Conde J, Oliva N, Atilano M, et al. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat Mater. 2016;15(3):353–363. doi: 10.1038/nmat4497
  • Kim H, Lee YK, Han KH, et al. BRC-mediated RNAi targeting of USE1 inhibits tumor growth in vitro and in vivo. Biomaterials. 2020;230:119630. doi: 10.1016/j.biomaterials.2019.119630
  • Andersen VL, Vinther M, Kumar R, et al. A self-assembled, modular nucleic acid-based nanoscaffold for multivalent theranostic medicine. Theranostics. 2019;9(9):2662–2677. doi: 10.7150/thno.32060
  • Bai C, Gao S, Hu S, et al. Self-assembled multivalent aptamer nanoparticles with potential CAR-like characteristics could activate T cells and inhibit melanoma growth. Mol Ther Oncolytics. 2020;17:9–20. doi: 10.1016/j.omto.2020.03.002
  • Guo S, Vieweger M, Zhang K, et al. Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nat Commun. 2020;11(1):972. doi: 10.1038/s41467-020-14780-5
  • Ferapontov A, Omer M, Baudrexel I, et al. Antigen footprint governs activation of the B cell receptor. Nat Commun. 2023;14(1):976. doi: 10.1038/s41467-023-36672-0
  • Thomas BJ, Porciani D, Burke DH. Cancer immunomodulation using bispecific aptamers. Mol Ther Nucleic Acids. 2022;27:894–915. doi: 10.1016/j.omtn.2022.01.008
  • Qi X, Liu X, Matiski L, et al. RNA origami nanostructures for potent and safe anticancer immunotherapy. ACS Nano. 2020;14(4):4727–4740. doi: 10.1021/acsnano.0c00602
  • Yip T, Qi X, Yan H, et al. RNA origami functions as a self-adjuvanted nanovaccine platform for cancer immunotherapy. ACS Nano. 2024;18(5):4056–4067. doi: 10.1021/acsnano.3c07284
  • Wang H, Ellipilli S, Lee W-J, et al. Multivalent rubber-like RNA nanoparticles for targeted co-delivery of paclitaxel and MiRNA to silence the drug efflux transporter and liver cancer drug resistance. J Control Release. 2021;330:173–184. doi: 10.1016/j.jconrel.2020.12.007
  • Jones CH. Breaking the mold with RNA—a “RNAissance” of life science. NPJ Genomic Med. 2024;9(2). doi: 10.1038/s41525-023-00387-4
  • Afonin KA, Dobrovolskaia MA, Ke W, et al. Critical review of nucleic acid nanotechnology to identify gaps and inform a strategy for accelerated clinical translation. Adv Drug Deliv Rev. 2022;181:114081. doi: 10.1016/j.addr.2021.114081
  • Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23(5):265–280. doi: 10.1038/s41576-021-00439-4
  • Afonin KA, Dobrovolskaia MA, Church G, et al., Opportunities, Barriers, and a Strategy for Overcoming Translational Challenges to Therapeutic Nucleic Acid Nanotechnology. ACS Nano. 2009;14(8):9221–9227. doi: 10.1021/acsnano.0c04753
  • Chandler M, Panigaj M, Rolband LA, et al. Challenges in optimizing RNA nanostructures for large-scale production and controlled therapeutic properties. Nanomedicine. 2020;15(13):1331–1340. doi: 10.2217/nnm-2020-0034