877
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of RNA binding proteins of the Drosophila behavior and human splicing (DBHS) family in health and cancer

, , &
Pages 1-17 | Accepted 15 Mar 2024, Published online: 29 Mar 2024

References

  • Will CL, Lührmann R. Spliceosome Structure and Function. Cold Spring Harb Perspect Biol. 2011;3(7):a003707. doi: 10.1101/cshperspect.a003707
  • Ule J, Blencowe BJ. Alternative Splicing Regulatory Networks: Functions, Mechanisms, and Evolution. Mol Cell. 2019;76(2):329–345. doi: 10.1016/j.molcel.2019.09.017
  • Takeiwa T, Mitobe Y, Ikeda K, et al. Roles of Splicing Factors in Hormone-Related Cancer Progression. Int J Mol Sci. 2020;21(5):1551. doi: 10.3390/ijms21051551
  • Sloan KE, Gleizes PE, Bohnsack MT. Nucleocytoplasmic Transport of RNAs and RNA–Protein Complexes. J Mol Biol. 2016;428(10 Pt A):2040–2059. doi: 10.1016/j.jmb.2015.09.023
  • Dalla Costa I, Buchanan CN, Zdradzinski MD, et al. The functional organization of axonal mRNA transport and translation. Nat Rev Neurosci. 2021;22(2):77–91. doi: 10.1038/s41583-020-00407-7
  • Harvey RF, Smith TS, Mulroney T, et al. Trans-acting translational regulatory RNA binding proteins. Wiley Interdiscip Rev RNA. 2018;9(3):e1465. doi: 10.1002/wrna.1465
  • Smith MR, Costa G. RNA-binding proteins and translation control in angiogenesis. FEBS J. 2022;289(24):7788–7809. doi: 10.1111/febs.16286
  • Verdile V, De Paola E, Paronetto MP. Aberrant Phase Transitions: Side Effects and Novel Therapeutic Strategies in Human Disease. Front Genet. 2019;10:173. doi: 10.3389/fgene.2019.00173
  • Knott GJ, Bond CS, Fox AH. The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res. 2016;44(9):3989–4004. doi: 10.1093/nar/gkw271
  • Yamazaki T, Yamamoto T, Yoshino H, et al. Paraspeckles are constructed as block copolymer micelles. EMBO J. 2021;40(12):e107270. doi: 10.15252/embj.2020107270
  • Hirose T, Virnicchi G, Tanigawa A, et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell. 2014;25(1):169–183. doi: 10.1091/mbc.e13-09-0558
  • Imamura K, Imamachi N, Akizuki G, et al. Long Noncoding RNA NEAT1-Dependent SFPQ Relocation from Promoter Region to Paraspeckle Mediates IL8 Expression upon Immune Stimuli. Mol Cell. 2014;53(3):393–406. doi: 10.1016/j.molcel.2014.01.009
  • Chen LL, Carmichael GG. Altered Nuclear Retention of mRNAs Containing Inverted Repeats in Human Embryonic Stem Cells: Functional Role of a Nuclear Noncoding RNA. Mol Cell. 2009;35(4):467–478. doi: 10.1016/j.molcel.2009.06.027
  • Wang Y, Hu SB, Wang MR, et al. Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria. Nat Cell Biol. 2018;20(10):1145–1158. doi: 10.1038/s41556-018-0204-2
  • Takayama KI, Honma T, Suzuki T, et al. Targeting Epigenetic and Posttranscriptional Gene Regulation by PSF Impairs Hormone Therapy–Refractory Cancer Growth. Cancer Res. 2021;81(13):3495–3508. doi: 10.1158/0008-5472.CAN-20-3819
  • Takayama KI, Matsuoka S, Adachi S, et al. Identification of small-molecule inhibitors against the interaction of RNA-binding protein PSF and its target RNA for cancer treatment. PNAS Nexus. 2023;2(6):pgad203. doi: 10.1093/pnasnexus/pgad203
  • Kim SJ, Ju JS, Kang MH, et al. RNA-binding protein NONO contributes to cancer cell growth and confers drug resistance as a theranostic target in TNBC. Theranostics. 2020;10(18):7974–7992. doi: 10.7150/thno.45037
  • Wang X, Han M, Wang S, et al. Targeting the splicing factor NONO inhibits GBM progression through GPX1 intron retention. Theranostics. 2022;12(12):5451–5469. doi: 10.7150/thno.72248
  • Kathman SG, Koo SJ, Lindsey GL, et al. Remodeling oncogenic transcriptomes by small molecules targeting NONO. Nat Chem Biol. 2023;19(7):825–836. doi: 10.1038/s41589-023-01270-0
  • Marshall AC, Cummins J, Kobelke S, et al. Different Low-complexity Regions of SFPQ Play Distinct Roles in the Formation of Biomolecular Condensates. J Mol Biol. 2023;435(24):168364. doi: 10.1016/j.jmb.2023.168364
  • Passon DM, Lee M, Rackham O, et al. Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc Natl Acad Sci, USA. 2012;109(13):4846–4850. doi: 10.1073/pnas.1120792109
  • Huang J, Casas Garcia GP, Perugini MA, et al. Crystal structure of a SFPQ/PSPC1 heterodimer provides insights into preferential heterodimerization of human DBHS family proteins. J Biol Chem. 2018;293(17):6593–6602. doi: 10.1074/jbc.RA117.001451
  • Hewage TW, Caria S, Lee M. A new crystal structure and small-angle X-ray scattering analysis of the homodimer of human SFPQ. Acta Crystallogr F Struct Biol Commun. 2019;75(Pt 6):439–449. doi: 10.1107/S2053230X19006599
  • Knott GJ, Chong YS, Passon DM, et al. Structural basis of dimerization and nucleic acid binding of human DBHS proteins NONO and PSPC1. Nucleic Acids Res. 2022;50(1):522–535. doi: 10.1093/nar/gkab1216
  • Schell B, Legrand P, Fribourg S. Crystal structure of SFPQ-NONO heterodimer. Biochimie. 2022;198:1–7. doi: 10.1016/j.biochi.2022.02.011
  • Lee PW, Marshall AC, Knott GJ, et al. Paraspeckle subnuclear bodies depend on dynamic heterodimerisation of DBHS RNA-binding proteins via their structured domains. J Biol Chem. 2022;298(11):102563. doi: 10.1016/j.jbc.2022.102563
  • Shao W, Bi X, Pan Y, et al. Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nat Chem Biol. 2022;18(1):70–80. doi: 10.1038/s41589-021-00904-5
  • Nakagawa S, Naganuma T, Shioi G, et al. Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Bio. 2011;193(1):31–39. doi: 10.1083/jcb.201011110
  • Yamada A, Toya H, Tanahashi M, et al. Species-specific formation of paraspeckles in intestinal epithelium revealed by characterization of NEAT1 in naked mole-rat. RNA. 2022;28(8):1128–1143. doi: 10.1261/rna.079135.122
  • Sasaki YT, Ideue T, Sano M, et al. MENε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci, USA. 2009;106(8):2525–2530. doi: 10.1073/pnas.0807899106
  • Clemson CM, Hutchinson JN, Sara SA, et al. An Architectural Role for a Nuclear Noncoding RNA: NEAT1 RNA Is Essential for the Structure of Paraspeckles. Mol Cell. 2009;33(6):717–726. doi: 10.1016/j.molcel.2009.01.026
  • Sunwoo H, Dinger ME, Wilusz JE, et al. MEN ε/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 2009;19(3):347–359. doi: 10.1101/gr.087775.108
  • Naganuma T, Nakagawa S, Tanigawa A, et al. Alternative 3’-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J. 2012;31(20):4020–4034. doi: 10.1038/emboj.2012.251
  • Yamazaki T, Souquere S, Chujo T, et al. Functional Domains of NEAT1 Architectural lncRNA Induce Paraspeckle Assembly through Phase Separation. Mol Cell. 2018;70(6):1038–1053.e7. doi: 10.1016/j.molcel.2018.05.019
  • Takayama KI, Inoue S. Targeting phase separation on enhancers induced by transcription factor complex formations as a new strategy for treating drug-resistant cancers. Front Oncol. 2022;12:1024600. doi: 10.3389/fonc.2022.1024600
  • Takayama KI, Kosaka T, Suzuki T, et al. Subtype-specific collaborative transcription factor networks are promoted by OCT4 in the progression of prostate cancer. Nat Commun. 2021;12(1):3766. doi: 10.1038/s41467-021-23974-4
  • West JA, Mito M, Kurosaka S, et al. Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J Cell Biol. 2016;214(7):817–830. doi: 10.1083/jcb.201601071
  • Takakuwa H, Yamazaki T, Souquere S, et al. Shell protein composition specified by the lncRNA NEAT1 domains dictates the formation of paraspeckles as distinct membraneless organelles. Nat Cell Biol. 2023;25(11):1664–1675. doi: 10.1038/s41556-023-01254-1
  • Hennig S, Kong G, Mannen T, et al. Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J Cell Biol. 2015;210(4):529–559. doi: 10.1083/jcb.201504117
  • Yamazaki T. The building process of the functional paraspeckle with long non-coding RNAs. Front Biosci (Elite Ed). 2015;7(1):1–41. doi: 10.2741/e715
  • Standaert L, Adriaens C, Radaelli E, et al. The long noncoding RNA Neat1 is required for mammary gland development and lactation. RNA. 2014;20(12):1844–1849. doi: 10.1261/rna.047332.114
  • Nakagawa S, Shimada M, Yanaka K, et al. The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development. 2014;141(23):4618–4627. doi: 10.1242/dev.110544
  • Ahmed ASI, Dong K, Liu J, et al. Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc Natl Acad Sci, USA. 2018;115(37):E8660–E8667. doi: 10.1073/pnas.1803725115
  • Park MK, Zhang L, Min KW, et al. NEAT1 is essential for metabolic changes that promote breast cancer growth and metastasis. Cell Metab. 2021;33(12):2380–2397.e9. doi: 10.1016/j.cmet.2021.11.011
  • Ray P, Kar A, Fushimi K, et al. PSF Suppresses Tau Exon 10 Inclusion by Interacting with a Stem-Loop Structure Downstream of Exon 10. J Mol Neurosci. 2011;45(3):453–466. doi: 10.1007/s12031-011-9634-z
  • Ishigaki S, Fujioka Y, Okada Y, et al. Altered Tau Isoform Ratio Caused by Loss of FUS and SFPQ Function Leads to FTLD-like Phenotypes. Cell Rep. 2017;18(5):1118–1131. doi: 10.1016/j.celrep.2017.01.013
  • Takayama KI, Fujiwara K, Inoue S. Amyloid precursor protein, an androgen-regulated gene, is targeted by RNA-binding protein PSF/SFPQ in neuronal cells. Genes Cells. 2019;24(11):719–730. doi: 10.1111/gtc.12721
  • Sato K, Takayama KI, Hashimoto M, et al. Transcriptional and Post-Transcriptional Regulations of Amyloid-β Precursor Protein (APP) mRNA. Front Aging. 2021;2:721579. doi: 10.3389/fragi.2021.721579
  • Kim KK, Kim YC, Adelstein RS, et al. Fox-3 and PSF interact to activate neural cell-specific alternative splicing. Nucleic Acids Res. 2011;39(8):3064–3078. doi: 10.1093/nar/gkq1221
  • Heyd F, Lynch KW. Phosphorylation-Dependent Regulation of PSF by GSK3 Controls CD45 Alternative Splicing. Mol Cell. 2010;40(1):126–137. doi: 10.1016/j.molcel.2010.09.013
  • Yarosh CA, Tapescu I, Thompson MG, et al. TRAP150 interacts with the RNA-binding domain of PSF and antagonizes splicing of numerous PSF-target genes in T cells. Nucleic Acids Res. 2015;43(18):9006–9016. doi: 10.1093/nar/gkv816
  • Benegiamo G, Mure LS, Erikson G, et al. The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding. Cell Metab. 2018;27(2):404–418.e7. doi: 10.1016/j.cmet.2017.12.010
  • Guallar D, Bi X, Pardavila JA, et al. RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nat Genet. 2018;50(3):443–451. doi: 10.1038/s41588-018-0060-9
  • Takeuchi A, Iida K, Tsubota T, et al. Loss of Sfpq Causes Long-Gene Transcriptopathy in the Brain. Cell Rep. 2018;23(5):1326–1341. doi: 10.1016/j.celrep.2018.03.141
  • Iida K, Hagiwara M, Takeuchi A. Multilateral Bioinformatics Analyses Reveal the Function-Oriented Target Specificities and Recognition of the RNA-Binding Protein SFPQ. iScience. 2020;23(7):101325. doi: 10.1016/j.isci.2020.101325
  • Hosokawa M, Takeuchi A, Tanihata J, et al. Loss of RNA-Binding Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle Mass Reduction with Metabolic Myopathy. iScience. 2019;13:229–242. doi: 10.1016/j.isci.2019.02.023
  • Li W, Karwacki-Neisius V, Ma C, et al. Nono deficiency compromises TET1 chromatin association and impedes neuronal differentiation of mouse embryonic stem cells. Nucleic Acids Res. 2020;48(9):4827–4838. doi: 10.1093/nar/gkaa213
  • Huang X, Bashkenova N, Hong Y, et al. A TET1-PSPC1-Neat1 molecular axis modulates PRC2 functions in controlling stem cell bivalency. Cell Rep. 2022;39(10):110928. doi: 10.1016/j.celrep.2022.110928
  • Dong BW, Jin XH, Yan CY, et al. Synergistic upregulation of NONO and PSPC1 regulates Sertoli cell response to MEHP via modulation of ALDH1A1 signaling. FEBS Lett. 2017;591(6):914–923. doi: 10.1002/1873-3468.12568
  • Kanai Y, Dohmae N, Hirokawa N. Kinesin Transports RNA: Isolation and Characterization of an RNA-Transporting Granule. Neuron. 2004;43(4):513–525. doi: 10.1016/j.neuron.2004.07.022
  • Cosker KE, Fenstermacher SJ, Pazyra-Murphy MF, et al. The RNA-binding protein SFPQ orchestrates an RNA regulon to promote axon viability. Nat Neurosci. 2016;19(5):690–696. doi: 10.1038/nn.4280
  • Fukuda Y, Pazyra-Murphy MF, Silagi ES, et al. Binding and transport of SFPQ-RNA granules by KIF5A/KLC1 motors promotes axon survival. J Cell Biol. 2021;220(1):e202005051. doi: 10.1083/jcb.202005051
  • Wang J, Rajbhandari P, Damianov A, et al. RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs. J Clin Invest. 2017;127(3):987–1004. doi: 10.1172/JCI89484
  • Zhang Y, Wu KM, Yang L, et al. Tauopathies: new perspectives and challenges. Mol Neurodegener. 2022;17(1):28. doi: 10.1186/s13024-022-00533-z
  • Ma X, Kawamoto S, Uribe J, et al. Function of the Neuron-specific Alternatively Spliced Isoforms of Nonmuscle Myosin II-B during Mouse Brain Development. Mol Biol Cell. 2006;17(5):2138–2149. doi: 10.1091/mbc.e05-10-0997
  • Emili A, Shales M, McCracken S, et al. Splicing and transcription-associated proteins PSF and p54nrb/NonO bind to the RNA polymerase II CTD. RNA. 2002;8(9):1102–1111. doi: 10.1017/S1355838202025037
  • Ke YD, Dramiga J, Schütz U, et al. Tau-Mediated Nuclear Depletion and Cytoplasmic Accumulation of SFPQ in Alzheimer’s and Pick’s Disease. PloS One. 2012;7(4):e35678. doi: 10.1371/journal.pone.0035678
  • Luisier R, Tyzack GE, Hall CE, et al. Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat Commun. 2018;9(1):2010. doi: 10.1038/s41467-018-04373-8
  • Wang G, Yang H, Yan S, et al. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain. Mol Neurodegener. 2015;10(1):42. doi: 10.1186/s13024-015-0036-5
  • Thomas-Jinu S, Gordon PM, Fielding T, et al. Non-nuclear Pool of Splicing Factor SFPQ Regulates Axonal Transcripts Required for Normal Motor Development. Neuron. 2017;94(2):322–336.e5. doi: 10.1016/j.neuron.2017.03.026
  • Widagdo J, Udagedara S, Bhembre N, et al. Familial ALS-associated SFPQ variants promote the formation of SFPQ cytoplasmic aggregates in primary neurons. Open Biol. 2022;12(9):220187. doi: 10.1098/rsob.220187
  • Younas N, Zafar S, Shafiq M, et al. SFPQ and Tau: critical factors contributing to rapid progression of Alzheimer’s disease. Acta Neuropathol. 2020;140(3):317–339. doi: 10.1007/s00401-020-02178-y
  • Sato K, Takayama KI, Inoue S. Stress granules sequester Alzheimer’s disease-associated gene transcripts and regulate disease-related neuronal proteostasis. Aging (Albany NY). 2023;15(10):3984–4011. doi: 10.18632/aging.204737
  • Wolozin B, Ivanov P. Stress granules and neurodegeneration. Nat Rev Neurosci. 2019;20(11):649–666. doi: 10.1038/s41583-019-0222-5
  • Vanderweyde T, Apicco DJ, Youmans-Kidder K, et al. Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity. Cell Rep. 2016;15(7):1455–1466. doi: 10.1016/j.celrep.2016.04.045
  • Tyzack GE, Manferrari G, Newcombe J, et al. Paraspeckle components NONO and PSPC1 are not mislocalized from motor neuron nuclei in sporadic ALS. Brain. 2020;143(8):e66. doi: 10.1093/brain/awaa205
  • An H, Tan JT, Shelkovnikova TA. Stress granules regulate stress-induced paraspeckle assembly. J Cell Biol. 2019;218(12):4127–4140. doi: 10.1083/jcb.201904098
  • Takayama KI, Suzuki T, Fujimura T, et al. Dysregulation of spliceosome gene expression in advanced prostate cancer by RNA-binding protein PSF. Proc Natl Acad Sci U S A. 2017;114(39):10461–10466. doi: 10.1073/pnas.1706076114
  • Hu Z, Dong L, Li S, et al. Splicing Regulator p54nrb/Non–POU Domain–Containing Octamer‐Binding Protein Enhances Carcinogenesis Through Oncogenic Isoform Switch of MYC Box–Dependent Interacting Protein 1 in Hepatocellular Carcinoma. Hepatology. 2020;72(2):548–568. doi: 10.1002/hep.31062
  • Zhang H, Su X, Burley SK, et al. mTOR regulates aerobic glycolysis through NEAT1 and nuclear paraspeckle-mediated mechanism in hepatocellular carcinoma. Theranostics. 2022;12(7):3518–3533. doi: 10.7150/thno.72581
  • Xie R, Chen X, Cheng L, et al. NONO Inhibits Lymphatic Metastasis of Bladder Cancer via Alternative Splicing of SETMAR. Mol Ther. 2021;29(1):291–307. doi: 10.1016/j.ymthe.2020.08.018
  • Pellarin I, Dall’acqua A, Gambelli A, et al. Splicing factor proline- and glutamine-rich (SFPQ) protein regulates platinum response in ovarian cancer-modulating SRSF2 activity. Oncogene. 2020;39(22):4390–4403. doi: 10.1038/s41388-020-1292-6
  • Mitobe Y, Iino K, Takayama KI, et al. PSF Promotes ER-Positive Breast Cancer Progression via Posttranscriptional Regulation of ESR1 and SCFD2. Cancer Res. 2020;80(11):2230–2242. doi: 10.1158/0008-5472.CAN-19-3095
  • Takeiwa T, Ikeda K, Suzuki T, et al. PSPC1 is a potential prognostic marker for hormone-dependent breast cancer patients and modulates RNA processing of ESR1 and SCFD2. Sci Rep. 2022;12(1):9495. doi: 10.1038/s41598-022-13601-7
  • Sun S, Gao T, Pang B, et al. RNA binding protein NKAP protects glioblastoma cells from ferroptosis by promoting SLC7A11 mRNA splicing in an m6A-dependent manner. Cell Death Dis. 2022;13(1):73. doi: 10.1038/s41419-022-04524-2
  • Iino K, Mitobe Y, Ikeda K, et al. RNA-binding protein NONO promotes breast cancer proliferation by post-transcriptional regulation of SKP2 and E2F8. Cancer Sci. 2020;111(1):148–159. doi: 10.1111/cas.14240
  • Liu PY, Erriquez D, Marshall GM, et al. Effects of a Novel Long Noncoding RNA, lncUSMycN, on N-Myc Expression and Neuroblastoma Progression. J Natl Cancer Inst. 2014;106(7):dju113. doi: 10.1093/jnci/dju113
  • Zhang S, Cooper JA, Chong YS, et al. NONO enhances mRNA processing of super-enhancer-associated GATA2 and HAND2 genes in neuroblastoma. EMBO Rep. 2023;24(2):e54977. doi: 10.15252/embr.202254977
  • Shen M, Zhang R, Jia W, et al. Nuclear scaffold protein p54nrb/NONO facilitates the hypoxia-enhanced progression of hepatocellular carcinoma. Oncogene. 2021;40(24):4167–4183. doi: 10.1038/s41388-021-01848-9
  • Takayama K, Horie-Inoue K, Katayama S, et al. Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J. 2013;32(12):1665–1680. doi: 10.1038/emboj.2013.99
  • Dong F, Qin X, Wang B, et al. ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment. Cancer Res. 2021;81(23):5876–5888. doi: 10.1158/0008-5472.CAN-21-1456
  • He SW, Xu C, Li YQ, et al. AR-induced long non-coding RNA LINC01503 facilitates proliferation and metastasis via the SFPQ-FOSL1 axis in nasopharyngeal carcinoma. Oncogene. 2020;39(34):5616–5632. doi: 10.1038/s41388-020-01388-8
  • Wei Y, Luo H, Yee PP, et al. Paraspeckle Protein NONO Promotes TAZ Phase Separation in the Nucleus to Drive the Oncogenic Transcriptional Program. Adv Sci (Weinh). 2021;8(24):e2102653. doi: 10.1002/advs.202102653
  • Li D, Chen Y, Mei H, et al. Ets-1 promoter-associated noncoding RNA regulates the NONO/ERG/Ets-1 axis to drive gastric cancer progression. Oncogene. 2018;37(35):4871–4886. doi: 10.1038/s41388-018-0302-4
  • Yeh HW, Hsu EC, Lee SS, et al. PSPC1 mediates TGF-β1 autocrine signalling and Smad2/3 target switching to promote EMT, stemness and metastasis. Nat Cell Biol. 2018;20(4):479–491. doi: 10.1038/s41556-018-0062-y
  • Lang YD, Chen HY, Ho CM, et al. PSPC1-interchanged interactions with PTK6 and β-catenin synergize oncogenic subcellular translocations and tumor progression. Nat Commun. 2019;10(1):5716. doi: 10.1038/s41467-019-13665-6
  • Kok VJT, Tang JY, Eng GWL, et al. SFPQ promotes RAS-mutant cancer cell growth by modulating 5’-UTR mediated translational control of CK1α. NAR Cancer. 2022;4(3):zcac027. doi: 10.1093/narcan/zcac027
  • Ji Q, Zhang L, Liu X, et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br J Cancer. 2014;111(4):736–748. doi: 10.1038/bjc.2014.383
  • Zhang Y, Wu D, Wang D. Retracted: long non-coding RNA ARAP1-AS1 promotes tumorigenesis and metastasis through facilitating proto-oncogene c-Myc translation via dissociating PSF/PTB dimer in cervical cancer. Cancer Med. 2020;9(5):1855–1866. doi: 10.1002/cam4.2860
  • Kauffman EC, Ricketts CJ, Rais-Bahrami S, et al. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat Rev Urol. 2014;11(8):465–475. doi: 10.1038/nrurol.2014.162
  • Damayanti NP, Budka JA, Khella HWZ, et al. Therapeutic Targeting of TFE3/IRS-1/PI3K/mTOR Axis in Translocation Renal Cell Carcinoma. Clin Cancer Res. 2018;24(23):5977–5989. doi: 10.1158/1078-0432.CCR-18-0269
  • Davis IJ, Kim JJ, Ozsolak F, et al. Oncogenic MITF dysregulation in clear cell sarcoma: Defining the MiT family of human cancers. Cancer Cell. 2006;9(6):473–484. doi: 10.1016/j.ccr.2006.04.021
  • Chen Y, Yang L, Lu Y, et al. Up-regulation of NMRK2 mediated by TFE3 fusions is the key for energy metabolism adaption of Xp11.2 translocation renal cell carcinoma. Cancer Lett. 2022;538:215689. doi: 10.1016/j.canlet.2022.215689
  • Chen Y, Lu Y, Yang L, et al. LncRNA like NMRK2 mRNA functions as a key molecular scaffold to enhance mitochondrial respiration of NONO-TFE3 rearranged renal cell carcinoma in an NAD+ kinase-independent manner. J Exp Clin Cancer Res. 2023;42(1):252. doi: 10.1186/s13046-023-02837-4
  • Wang B, Gan W, Han X, et al. The positive regulation loop between NRF1 and NONO-TFE3 fusion promotes phase separation and aggregation of NONO-TFE3 in NONO-TFE3 tRCC. Int J Biol Macromol. 2021;176:437–447. doi: 10.1016/j.ijbiomac.2021.02.061
  • Chen Y, Yang L, Liu N, et al. NONO-TFE3 Fusion Promotes Aerobic Glycolysis and Angiogenesis by Targeting HIF1A in NONO-TFE3 Translocation Renal Cell Carcinoma. Curr Cancer Drug Targets. 2021;21(8):713–723. doi: 10.2174/1568009621666210412115026
  • Selenica P, Conlon N, Gonzalez C, et al. Genomic Profiling Aids Classification of Diagnostically Challenging Uterine Mesenchymal Tumors With Myomelanocytic Differentiation. Am J Surg Pathol. 2021;45(1):77–92. doi: 10.1097/PAS.0000000000001572
  • Argani P, Zhong M, Reuter VE, et al. TFE3-Fusion Variant Analysis Defines Specific Clinicopathologic Associations Among Xp11 Translocation Cancers. Am J Surg Pathol. 2016;40(6):723–737. doi: 10.1097/PAS.0000000000000631
  • Fritchie KJ, Dermawan JK, Astbury C, et al. Novel NONO: TFE3 fusion and ALK co-expression identified in a subset of cutaneous microcystic/reticular schwannoma. Virchows Arch. 2023;483(2):237–243. doi: 10.1007/s00428-023-03605-7
  • De Braekeleer E, Douet-Guilbert N, Rowe D, et al. ABL1 fusion genes in hematological malignancies: a review. Eur J Haematol. 2011;86(5):361–371. doi: 10.1111/j.1600-0609.2011.01586.x
  • Tran TH, Harris MH, Nguyen JV, et al. Prognostic impact of kinase-activating fusions and IKZF1 deletions in pediatric high-risk B-lineage acute lymphoblastic leukemia. Blood Adv. 2018;2(5):529–533. doi: 10.1182/bloodadvances.2017014704
  • Brown LM, Hediyeh-Zadeh S, Sadras T, et al. SFPQ-ABL1 and BCR-ABL1 use different signaling networks to drive B-cell acute lymphoblastic leukemia. Blood Adv. 2022;6(7):2373–2387. doi: 10.1182/bloodadvances.2021006076
  • Wadosky KM, Koochekpour S. Androgen receptor splice variants and prostate cancer: From bench to bedside. Oncotarget. 2017;8(11):18550–18576. doi: 10.18632/oncotarget.14537
  • Ciccarese C, Santoni M, Brunelli M, et al. AR-V7 and prostate cancer: The watershed for treatment selection? Cancer Treat Rev. 2016;43:27–35. doi: 10.1016/j.ctrv.2015.12.003
  • Jeyaratnam DC, Baduin BS, Hansen MC, et al. Delineation of known and new transcript variants of the SETMAR (metnase) gene and the expression profile in hematologic neoplasms. Exp Hematol. 2014;42(6):448–456.e4. doi: 10.1016/j.exphem.2014.02.005
  • Van Opdenbosch N, Lamkanfi M. Caspases in Cell Death, Inflammation, and Disease. Immunity. 2019;50(6):1352–1364. doi: 10.1016/j.immuni.2019.05.020
  • Yersal O, Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol. 2014;5(3):412–424. doi: 10.5306/wjco.v5.i3.412
  • Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–282. doi: 10.1038/s41580-020-00324-8
  • Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620. doi: 10.1007/s13238-020-00789-5
  • Wu T, Gu X, Cui H. Emerging Roles of SKP2 in Cancer Drug Resistance. Cells. 2021;10(5):1147. doi: 10.3390/cells10051147
  • Goel S, DeCristo MJ, McAllister SS, et al. CDK4/6 Inhibition in Cancer: Beyond Cell Cycle Arrest. Trends Cell Biol. 2018;28(11):911–925. doi: 10.1016/j.tcb.2018.07.002
  • Ye L, Guo L, He Z, et al. Upregulation of E2F8 promotes cell proliferation and tumorigenicity in breast cancer by modulating G1/S phase transition. Oncotarget. 2016;7(17):23757–23771. doi: 10.18632/oncotarget.8121
  • Boeva V, Louis-Brennetot C, Peltier A, et al. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries. Nat Genet. 2017;49(9):1408–1413. doi: 10.1038/ng.3921
  • van Groningen T, Koster J, Valentijn LJ, et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet. 2017;49(8):1261–1266. doi: 10.1038/ng.3899
  • Zhang XL, Chen XH, Xu B, et al. K235 acetylation couples with PSPC1 to regulate the m6A demethylation activity of ALKBH5 and tumorigenesis. Nat Commun. 2023;14(1):3815. doi: 10.1038/s41467-023-39414-4
  • Zheng G, Dahl JA, Niu Y, et al. ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility. Mol Cell. 2013;49(1):18–29. doi: 10.1016/j.molcel.2012.10.015
  • Chen S, Youhong T, Tan Y, et al. EGFR-PKM2 signaling promotes the metastatic potential of nasopharyngeal carcinoma through induction of FOSL1 and ANTXR2. Carcinogenesis. 2020;41(6):723–733. doi: 10.1093/carcin/bgz180
  • He W, Zhou X, Mao Y, et al. CircCRIM1 promotes nasopharyngeal carcinoma progression via the miR-34c-5p/FOSL1 axis. Eur J Med Res. 2022;27(1):59. doi: 10.1186/s40001-022-00667-2
  • Xia S, Pan Y, Liang Y, et al. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine. 2020;51:102610. doi: 10.1016/j.ebiom.2019.102610
  • Goldberg L, Tijssen MR, Birger Y, et al. Genome-scale expression and transcription factor binding profiles reveal therapeutic targets in transgenic ERG myeloid leukemia. Blood. 2013;122(15):2694–703. doi: 10.1182/blood-2013-01-477133
  • Gupta S, Iljin K, Sara H, et al. FZD4 as a Mediator of ERG Oncogene–Induced WNT Signaling and Epithelial-to-Mesenchymal Transition in Human Prostate Cancer Cells. Cancer Res. 2010;70(17):6735–6745. doi: 10.1158/0008-5472.CAN-10-0244
  • Lukong KE, Huot ME, Richard S. Brk Activates Rac1 and Promotes Cell Migration and Invasion by Phosphorylating Paxillin. Cell Signal. 2009;21(9):1415–1422. doi: 10.1016/j.cellsig.2009.04.008
  • Chen HY, Shen CH, Tsai YT, et al. Brk activates Rac1 and promotes cell migration and invasion by Phosphorylating Paxillin. Mol Cell Biol. 2004;24(24):10558–10572. doi: 10.1128/MCB.24.24.10558-10572.2004
  • Ramanathan A, Robb GB, Chan SH. mRNA capping: biological functions and applications. Nucleic Acids Res. 2016;44(16):7511–7526. doi: 10.1093/nar/gkw551
  • Walters B, Thompson SR. Cap-Independent Translational Control of Carcinogenesis. Front Oncol. 2016;6:128. doi: 10.3389/fonc.2016.00128
  • Yang Y, Wang Z. IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol. 2019;11(10):911–919. doi: 10.1093/jmcb/mjz091
  • Cheong JK, Zhang F, Chua PJ, et al. Casein kinase 1α-dependent feedback loop controls autophagy in RAS-driven cancers. J Clin Invest. 2015;125(4):1401–1418. doi: 10.1172/JCI78018
  • Onodera T, Momose I, Kawada M. Potential Anticancer Activity of Auranofin. Chem Pharm Bull (Tokyo). 2019;67(3):186–191. doi: 10.1248/cpb.c18-00767
  • Abdalbari FH, Telleria CM. The gold complex auranofin: new perspectives for cancer therapy. Discov Oncol. 2021;12(1):42. doi: 10.1007/s12672-021-00439-0