625
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Tissue-specific silencing of integrated transgenes achieved through endogenous RNA interference in Caenorhabditis elegans

, , , & ORCID Icon
Pages 1-10 | Accepted 15 Mar 2024, Published online: 26 Mar 2024

References

  • Martin DI, Whitelaw E. The vagaries of variegating transgenes. BioEssays. 1996;18(11):919–923. doi: 10.1002/bies.950181111
  • Hsieh J, Fire A. Recognition and silencing of repeated DNA. Annu Rev Genet. 2000;34(1):187–204. doi: 10.1146/annurev.genet.34.1.187
  • Vaucheret H, Beclin C, Elmayan T, et al. Transgene-induced gene silencing in plants. Plant J. 1998;16(6):651–659. doi: 10.1046/j.1365-313x.1998.00337.x
  • Assaad FF, Tucker KL, Signer ER. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol Biol. 1993;22(6):1067–1085. doi: 10.1007/BF00028978
  • Mello C, Fire A. DNA transformation. methods Cell Bio. 1995;48:451–482.
  • Wallrath LL, Elgin SC. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 1995;9(10):1263–1277. doi: 10.1101/gad.9.10.1263
  • Dorer DR, Henikoff S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell. 1994;77(7):993–1002. doi: 10.1016/0092-8674(94)90439-1
  • Garrick D, Fiering S, Martin DI, et al. Repeat-induced gene silencing in mammals. Nature Genet. 1998;18(1):56–59. doi: 10.1038/ng0198-56
  • Minkina O, Hunter CP. Stable heritable germline silencing directs somatic silencing at an endogenous locus. Molecular Cell. 2017;65(4):659–670.e655. doi: 10.1016/j.molcel.2017.01.034
  • Yang H, Zhang Y, Vallandingham J, et al. The RDE-10/RDE-11 complex triggers RNAi-induced mRNA degradation by association with target mRNA in C. elegans. Genes Dev. 2012;26(8):846–856. doi: 10.1101/gad.180679.111
  • Ketting RF, Plasterk RH. A genetic link between co-suppression and RNA interference in C. elegans. Nature. 2000;404(6775):296–298. doi: 10.1038/35005113
  • Dernburg AF, Zalevsky J, Colaiacovo MP, et al. Transgene-mediated cosuppression in the C. elegans germ line. Genes Dev. 2000;14(13):1578–1583. doi: 10.1101/gad.14.13.1578
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature. 1998;391(6669):806–811. doi: 10.1038/35888
  • Fire A. RNA-triggered gene silencing. Trends in genetics : TIG. Trends Genet. 1999;15(9):358–363. doi: 10.1016/S0168-9525(99)01818-1
  • Fischer SE. Small RNA-mediated gene silencing pathways in C. elegans. Int J Biochem Cell Biol. 2010;42(8):1306–1315. doi: 10.1016/j.biocel.2010.03.006
  • Toker IA, Lev I, Mor Y, et al. Transgenerational inheritance of sexual attractiveness via small RNAs enhances evolvability in C. elegans. Dev Cell. 2022;57(3):298–309.e299. doi: 10.1016/j.devcel.2022.01.005
  • Das PP, Bagijn MP, Goldstein LD, et al. Piwi and piRnas act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the caenorhabditis elegans germline. Molecular Cell. 2008;31(1):79–90. doi: 10.1016/j.molcel.2008.06.003
  • Han T, Manoharan AP, Harkins TT, et al. 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci, USA. 2009;106(44):18674–18679. doi: 10.1073/pnas.0906378106
  • Kim JK, Gabel HW, Kamath RS, et al. Functional genomic analysis of RNA interference in C. elegans. Science. 2005;308(5725):1164–1167. doi: 10.1126/science.1109267
  • Fire A, Albertson D, Harrison SW, et al. Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development. 1991;113(2):503–514. doi: 10.1242/dev.113.2.503
  • Pavelec DM, Lachowiec J, Duchaine TF, et al. Requirement for the ERI/DICER complex in endogenous RNA interference and sperm development in caenorhabditis elegans. Genetics. 2009;183(4):1283. doi: 10.1534/genetics.109.108134
  • Ruby JG, Jan C, Player C, et al. Large-scale sequencing reveals 21U-RNAs and additional microRnas and endogenous siRnas in C. elegans. Cell. 2006;127(6):1193–1207. doi: 10.1016/j.cell.2006.10.040
  • Pak J, Fire A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science. 2007;315(5809):241–244. doi: 10.1126/science.1132839
  • Su R, Fan LH, Cao C, et al. Global profiling of RNA-binding protein target sites by LACE-seq. Nat Cell Biol. 2021;23(6):664–675. doi: 10.1038/s41556-021-00696-9
  • Ow MC, Hall. S.E. piRnas and endo-siRnas: small molecules with large roles in the nervous system. neurochemistry international. Neurochem Int. 2021;148:105086. doi: 10.1016/j.neuint.2021.105086
  • Gu W, Shirayama M, Conte D Jr., et al. Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Molecular Cell. 2009;36(2):231–244. doi: 10.1016/j.molcel.2009.09.020
  • Kennedy S, Wang D, Ruvkun G. A. conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature. 2004;427(6975):645–649. doi: 10.1038/nature02302
  • Thivierge C, Makil N, Flamand M, et al. Tudor domain ERI-5 tethers an RNA-dependent RNA polymerase to DCR-1 to potentiate endo-RNAi. Nat Struct Mol Biol. 2011;19(1):90–97. doi: 10.1038/nsmb.2186
  • Ambros V, Lee RC, Lavanway A, et al. MicroRNAs and other tiny endogenous RNAs in C. elegans. Current biology: CB. Curr Biol. 2003;13(10):807–818. doi: 10.1016/S0960-9822(03)00287-2
  • Sijen T, Steiner FA, Thijssen KL, et al. Secondary siRnas result from unprimed RNA synthesis and form a distinct class. Science. 2007;315(5809):244–247. doi: 10.1126/science.1136699
  • Gent JI, Schvarzstein M, Villeneuve AM, et al. A caenorhabditis elegans RNA-directed RNA polymerase in sperm development and endogenous RNA interference. Genetics. 2009;183(4):1297–1314. doi: 10.1534/genetics.109.109686
  • Gajic Z, Kaur D, Ni J, et al. Target-dependent suppression of siRNA production modulates the levels of endogenous siRnas in the caenorhabditis elegans germline. Development 2022;149(16). doi: 10.1242/dev.200692
  • Li Y, Chen S, Liu W, et al. A full-body transcription factor expression atlas with completely resolved cell identities in C. elegans. Nat Commun. 2024;15:358. doi: 10.1038/s41467-023-42677-6
  • Brenner S. The genetics of caenorhabditis elegans. Genetics. 1974;77(1):71–94. doi: 10.1093/genetics/77.1.71
  • Li Y, Zhao D, Horie T, et al. Conserved gene regulatory module specifies lateral neural borders across bilaterians. Proc Natl Acad Sci, USA. 2017;114(31):E6352–e6360. doi: 10.1073/pnas.1704194114
  • Zeiser E, Frokjaer-Jensen C, Jorgensen E, et al. MosSCI and gateway compatible plasmid toolkit for constitutive and inducible expression of transgenes in the C. elegans germline. PloS One. 2011;6(5):e20082. doi: 10.1371/journal.pone.0020082
  • Vida Praitis EC, Collar D, Austin J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics. 2001;157(3):1217–1226. doi: 10.1093/genetics/157.3.1217
  • Dickinson DJ, Ward JD, Reiner DJ, et al. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods. 2013;10(10):1028–1034. doi: 10.1038/nmeth.2641
  • Spieth J, Brooke G, Kuersten S, et al. Operons in C. elegans: polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions. Cell. 1993;73(3):521–532. doi: 10.1016/0092-8674(93)90139-h
  • Liu X, Long F, Peng H, et al. Analysis of cell fate from single-cell gene expression profiles in C. elegans. Cell. 2009;139(3):623–633. doi: 10.1016/j.cell.2009.08.044
  • Kelly WG, Xu S, Montgomery MK, et al. Distinct requirements for somatic and germline expression of a generally expressed caernorhabditis elegans gene. Genetics. 1997;146(1):227–238. doi: 10.1093/genetics/146.1.227
  • Frokjaer-Jensen C, Davis MW, Sarov M, et al. Random and targeted transgene insertion in C. elegans using a modified mosl transposon. Nat Methods. 2014;11(5):529–534. doi: 10.1038/nmeth.2889
  • Ketting RF, Fischer SE, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001;15(20):2654–2659. doi: 10.1101/gad.927801
  • Knight SW, Bass BL. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in caenorhabditis elegans. Science. 2001;293(5538):2269–2271. doi: 10.1126/science.1062039
  • Tabara H, Yigit E, Siomi H, et al. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell. 2002;109(7):861–871. doi: 10.1016/S0092-8674(02)00793-6
  • Duchaine TF, Wohlschlegel JA, Kennedy S, et al. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell. 2006;124(2):343–354. doi: 10.1016/j.cell.2005.11.036
  • Carthew RW, Sontheimer EJ. Origins and mechanisms of miRnas and siRnas. Cell. 2009;136(4):642–655. doi: 10.1016/j.cell.2009.01.035
  • Tabara H, Sarkissian M, Kelly WG, et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell. 1999;99(2):123–132. doi: 10.1016/S0092-8674(00)81644-X
  • Yigit E, Batista PJ, Bei Y, et al. Analysis of the C. elegans Argonaute family reveals that distinct argonautes act sequentially during RNAi. Cell. 2006;127(4):747–757. doi: 10.1016/j.cell.2006.09.033
  • Zhang C, Montgomery TA, Gabel HW, et al. Mut-16 and other mutator class genes modulate 22G and 26G siRNA pathways in caenorhabditis elegans. Proc Natl Acad Sci, USA. 2011;108(4):1201–1208. doi: 10.1073/pnas.1018695108
  • Phillips CM, Montgomery TA, Breen PC, et al. MUT-16 promotes formation of perinuclear mutator foci required for RNA silencing in the C. elegans germline. Genes Dev. 2012;26:1433–1444. doi: 10.1101/gad.193904.112
  • Tops BBJ, Tabara H, Sijen T, et al. RDE-2 interacts with MUT-7 to mediate RNA interference in caenorhabditis elegans. Nucleic Acids Res. 2005;33(1):347–355. doi: 10.1093/nar/gki183
  • Vasale JJ, Gu W, Thivierge C, et al. Sequential rounds of RNA-dependent RNA transcription drive endogenous small-RNA biogenesis in the ERGO-1/Argonaute pathway. Proc Natl Acad Sci, USA. 2010;107(8):3582–3587. doi: 10.1073/pnas.0911908107
  • Ketting RF, Haverkamp TH, van Luenen HG, et al. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell. 1999;99(2):133–141. doi: 10.1016/S0092-8674(00)81645-1
  • Chen CC, Simard MJ, Tabara H, et al. A member of the polymerase β nucleotidyltransferase superfamily is required for RNA interference in C. elegans. Curr Biol. 2005;15(4):378–383. doi: 10.1016/j.cub.2005.01.009
  • Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010;11:204–220. doi: 10.1038/nrg2719
  • Towbin BD, Gonzalez-Aguilera C, Sack R, et al. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell. 2012;150(5):934–947. doi: 10.1016/j.cell.2012.06.051
  • Black JC, Whetstine JR. Chromatin landscape: methylation beyond transcription. Epigenetics. 2011;6(1):9–15. doi: 10.4161/epi.6.1.13331
  • Jenuwein T; Allis CD. Translating the histone code. Science. 2001;293(5532):1074–1080. doi: 10.1126/science.1063127
  • Nicetto D, Donahue G, Jain T, et al. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science. 2019;363(6424):294. doi: 10.1126/science.aau0583
  • Weiser NE, Yang DX, Feng S, et al. MORC-1 integrates nuclear RNAi and transgenerational chromatin architecture to promote germline immortality. Dev Cell. 2017;41(4):408–423.e7. doi: 10.1016/j.devcel.2017.04.023
  • Boulton SJ, Gartner A, Reboul J, et al. Combined functional genomic maps of the C. elegans DNA damage response. Science. 2002;295(5552):127. doi: 10.1126/science.1065986
  • Shirayama M, Seth M, Lee HC, et al. piRnas initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell. 2012;150(1):65–77. doi: 10.1016/j.cell.2012.06.015
  • Batista PJ, Ruby JG, Claycomb JM, et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Molecular Cell. 2008;31(1):67–78. doi: 10.1016/j.molcel.2008.06.002
  • Aoki K, Moriguchi H, Yoshioka T, et al. In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. EMBO J. 2007;26(24):5007–5019. doi: 10.1038/sj.emboj.7601910
  • Kalinava N, Ni JZ, Gajic Z, et al. C. elegans Heterochromatin Factor SET-32 plays an essential role in transgenerational establishment of nuclear RNAi-mediated epigenetic silencing. Cell Rep. 2018;25(8):2273–2284.e3. doi: 10.1016/j.celrep.2018.10.086
  • Gu SG, Pak J, Guang S, et al. Amplification of siRNA in caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat Genet. 2012;44(2):157–164. doi: 10.1038/ng.1039
  • Mao H, Zhu C, Zong D, et al. The nrde pathway mediates small-RNA-directed histone H3 lysine 27 trimethylation in caenorhabditis elegans. Curr Biol. 2015;25(18):2398–2403. doi: 10.1016/j.cub.2015.07.051
  • Guang S, Bochner AF, Burkhart KB, et al. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature. 2010;465(7301):1097–1101. doi: 10.1038/nature09095
  • Buckley BA, Burkhart KB, Gu SG, et al. A nuclear argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature. 2012;489(7416):447–451. doi: 10.1038/nature11352
  • Mittelsten Scheid O, Afsar K, Paszkowski J. Release of epigenetic gene silencing by trans-acting mutations in Arabidopsis. Proc Natl Acad Sci, USA. 1998;95(2):632–637. doi: 10.1073/pnas.95.2.632
  • Vongs A, Kakutani T, Martienssen RA, et al. Arabidopsis thaliana DNA methylation mutants. Science. 1993;260(5116):1926–1928. doi: 10.1126/science.8316832
  • Jeddeloh JA, Stokes TL, Richards EJ. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet. 1999;22(1):94–97. doi: 10.1038/8803
  • Kelly WG, Fire A. Chromatin silencing and the maintenance of a functional germline in caenorhabditis elegans. Development. 1998;125(13):2451–2456. doi: 10.1242/dev.125.13.2451
  • Leyva-Diaz E, Stefanakis N, Carrera I, et al. Silencing of repetitive DNA Is controlled by a member of an unusual caenorhabditis elegans Gene Family. Genetics. 2017;207(2):529–545. doi: 10.1534/genetics.117.300134
  • Collins J, Saari B, Anderson P. Activation of a transposable element in the germ line but not the soma of caenorhabditis elegans. Nature. 1987;328(6132):726–728. doi: 10.1038/328726a0
  • Berman JR, Kenyon C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell. 2006;124(5):1055–1068. doi: 10.1016/j.cell.2006.01.039
  • Sasso JM, Ammar RM, Tenchov R, et al. Gut microbiome–brain alliance: a landscape view into mental and gastrointestinal health and disorders. ACS Chem Neurosci. 2023;14(10):1717–1763. doi: 10.1021/acschemneuro.3c00127
  • Rojas OL, Pröbstel A-K, Porfilio EA, et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell. 2019;177(2):492–493. doi: 10.1016/j.cell.2018.11.035