651
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Mistranslating the genetic code with leucine in yeast and mammalian cells

, , , , , , , , , , , & show all
Pages 1-23 | Accepted 03 Apr 2024, Published online: 17 Apr 2024

References

  • O’Donoghue P, Luthey-Schulten Z. On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol Mol Biol Rev. 2003;67(4):550–573. doi: 10.1128/MMBR.67.4.550-573.2003
  • Schimmel PR, Söll D. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem. 1979;48(1):601–648. doi: 10.1146/annurev.bi.48.070179.003125
  • Giege R, Sissler M, Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 1998;26(22):5017–5035. doi: 10.1093/nar/26.22.5017
  • Hou YM, Schimmel P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 1988;333(6169):140–145. doi: 10.1038/333140a0
  • Lenhard B, Orellana O, Ibba M, et al. tRNA recognition and evolution of determinants in seryl-tRNA synthesis. Nucleic Acids Res. 1999;27(3):721–729. doi: 10.1093/nar/27.3.721
  • O’Donoghue P, Prat L, Heinemann IU, et al. Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion. FEBS Lett. 2012;586(21):3931–3937. doi: 10.1016/j.febslet.2012.09.033
  • Ambrogelly A, Gundllapalli S, Herring S, et al. Pyrrolysine is not hardwired for cotranslational insertion at UAG codons. Proc Natl Acad Sci, USA. 2007;104(9):3141–3146. doi: 10.1073/pnas.0611634104
  • Huang Q, Yao P, Eriani G, et al. In vivo identification of essential nucleotides in tRnaleu to its functions by using a constructed yeast tRNALeu knockout strain. Nucleic Acids Res. 2012;40(20):10463–10477. doi: 10.1093/nar/gks783
  • Breitschopf K, Achsel T, Busch K, et al. Identity elements of human tRNA Leu: structural requirements for converting human tRNA Ser into a leucine acceptor in vitro. Nucleic Acids Res. 1995;23(18):3633–3637. doi: 10.1093/nar/23.18.3633
  • Giege R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res. 2023;51(4):1528–1570. doi: 10.1093/nar/gkad007
  • Parker J. Errors and alternatives in reading the universal genetic code. Microbiol Rev. 1989;53(3):273–298. doi: 10.1128/mr.53.3.273-298.1989
  • Joshi K, Bhatt MJ, Farabaugh PJ. Codon-specific effects of tRNA anticodon loop modifications on translational misreading errors in the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 2018;46(19):10331–10339. doi: 10.1093/nar/gky664
  • Manickam N, Nag N, Abbasi A, et al. Studies of translational misreading in vivo show that the ribosome very efficiently discriminates against most potential errors. RNA. 2014;20(1):9–15. doi: 10.1261/rna.039792.113
  • Zhang J, Ieong KW, Mellenius H, et al. Proofreading neutralizes potential error hotspots in genetic code translation by transfer RNAs. RNA. 2016;22(6):896–904. doi: 10.1261/rna.055632.115
  • Rozik P, Szabla R, Lant JT, et al. A novel fluorescent reporter sensitive to serine mis-incorporation. RNA Biol. 2022;19(1):221–233. doi: 10.1080/15476286.2021.2015173
  • Ruan B, Palioura S, Sabina J, et al. Quality control despite mistranslation caused by an ambiguous genetic code. Proc Natl Acad Sci, USA. 2008;105(43):16502–16507. doi: 10.1073/pnas.0809179105
  • Hoffman KS, Berg MD, Shilton BH, et al. Genetic selection for mistranslation rescues a defective co-chaperone in yeast. Nucleic Acids Res. 2017;45(6):3407–3421. doi: 10.1093/nar/gkw1021
  • Berg MD, Zhu Y, Genereaux J, et al. Modulating mistranslation potential of tRNASer in Saccharomyces cerevisiae. Genetics. 2019;213(3):849–863. doi: 10.1534/genetics.119.302525
  • Berg MD, Zhu Y, Ruiz BY, et al. The amino acid substitution affects cellular response to mistranslation. G3 (Bethesda). 2021;11(10):11. doi: 10.1093/g3journal/jkab218
  • Lant JT, Kiri R, Duennwald ML, et al. Formation and persistence of polyglutamine aggregates in mistranslating cells. Nucleic Acids Res. 2021;49(20):11883–11899. doi: 10.1093/nar/gkab898
  • Hasan F, Lant JT, O’Donoghue P. Perseverance of protein homeostasis despite mistranslation of glycine codons with alanine. Philos Trans R Soc Lond B Biol Sci. 2023;378:20220029. doi: 10.1098/rstb.2022.0029
  • Lant JT, Berg MD, Sze DHW, et al. Visualizing tRNA-dependent mistranslation in human cells. RNA Biol. 2018;15(4–5):567–575. doi: 10.1080/15476286.2017.1379645
  • Lant JT, Hasan F, Briggs J, et al. Genetic interaction of tRNA-dependent mistranslation with fused in sarcoma protein aggregates. Genes (Basel). 2023;14(2):14. doi: 10.3390/genes14020518
  • Wu J, Fan Y, Ling J. Mechanism of oxidant-induced mistranslation by threonyl-tRNA synthetase. Nucleic Acids Res. 2014;42(10):6523–6531. doi: 10.1093/nar/gku271
  • Roy H, Ibba M. Phenylalanyl-tRNA synthetase contains a dispensable RNA-binding domain that contributes to the editing of noncognate aminoacyl-tRNA. Biochemistry. 2006;45(30):9156–9162. doi: 10.1021/bi060549w
  • Chen M, Kuhle B, Diedrich J, et al. Cross-editing by a tRNA synthetase allows vertebrates to abundantly express mischargeable tRNA without causing mistranslation. Nucleic Acids Res. 2020;48(12):6445–6457. doi: 10.1093/nar/gkaa469
  • Ma X, Bakhtina M, Shulgina I, et al. Structural basis of tRNAPro acceptor stem recognition by a bacterial trans-editing domain. Nucleic Acids Res. 2023;51(8):3988–3999. doi: 10.1093/nar/gkad192
  • Lee JW, Beebe K, Nangle LA, et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature. 2006;443(7107):50–55. doi: 10.1038/nature05096
  • Murgola EJ, Yanofsky C. Suppression of glutamic acid codons by mutant glycine transfer ribonucleic acid. J Bacteriol. 1974;117(2):439–443. doi: 10.1128/jb.117.2.439-443.1974
  • Lant JT, Berg MD, Heinemann IU, et al. Pathways to disease from natural variations in human cytoplasmic tRNAs. J Biol Chem. 2019;294(14):5294–5308. doi: 10.1074/jbc.REV118.002982
  • Berg MD, Giguere DJ, Dron JS, et al. Targeted sequencing reveals expanded genetic diversity of human transfer RNAs. RNA Biol. 2019;16(11):1574–1585. doi: 10.1080/15476286.2019.1646079
  • Taliun D, Harris DN, Kessler MD, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature. 2021;590(7845):290–299. doi: 10.1038/s41586-021-03205-y
  • Chan PP, Lowe TM. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 2016;44(D1):D184–9. doi: 10.1093/nar/gkv1309
  • Consortium UK, Walter K, Min JL, et al. The UK10K project identifies rare variants in health and disease. Nature. 2015;526(7571):82–90. doi: 10.1038/nature14962
  • Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–443. doi: 10.1038/s41586-020-2308-7
  • Tadaka S, Katsuoka F, Ueki M, et al. 3.5KJPNv2: an allele frequency panel of 3552 Japanese individuals including the X chromosome. Hum Genome Var. 2019;6(1):28. doi: 10.1038/s41439-019-0059-5
  • Gomes AC, Kordala AJ, Strack R, et al. A dual fluorescent reporter for the investigation of methionine mistranslation in live cells. RNA. 2016;22(3):467–476. doi: 10.1261/rna.054163.115
  • Berg MD, Isaacson JR, Cozma E, et al. Regulating expression of mistranslating tRNAs by readthrough RNA polymerase II transcription. ACS Synth Biol. 2021;10(11):3177–3189. doi: 10.1021/acssynbio.1c00461
  • Schmidt EK, Clavarino G, Ceppi M, et al. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6(4):275–277. doi: 10.1038/nmeth.1314
  • Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089
  • Das U, Shuman S. Mechanism of RNA 2′,3′-cyclic phosphate end healing by T4 polynucleotide kinase–phosphatase. Nucleic Acids Res. 2013;41(1):355–365. doi: 10.1093/nar/gks977
  • Watkins CP, Zhang W, Wylder AC, et al. A multiplex platform for small RNA sequencing elucidates multifaceted tRNA stress response and translational regulation. Nat Commun. 2022;13(1):2491. doi: 10.1038/s41467-022-30261-3
  • Upton HE, Ferguson L, Temoche-Diaz MM, et al. Low-bias ncRNA libraries using ordered two-template relay: serial template jumping by a modified retroelement reverse transcriptase. Proc Natl Acad Sci, USA. 2021;118(42):118. doi: 10.1073/pnas.2107900118
  • Itokawa K. Illumina TruSeq Library quantification with qPCR probe method. https://protocols.io/view/illumina-truseq-library-quantification-with-qpcr-p-bnpamdie:protocols.io. 2020.
  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–12. doi: 10.14806/ej.17.1.200
  • Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 2017;27(3):491–499. doi: 10.1101/gr.209601.116
  • Holmes AD, Howard JM, Chan PP, et al. tRNA Analysis of eXpression (tRAX): a tool for integrating analysis of tRnas, tRNA-derived small RNAs, and tRNA modifications. bioRxiv. 2022;1–55. doi: 10.1101/2022.07.02.498565
  • Cappannini A, Ray A, Purta E, et al. MODOMICS: a database of RNA modifications and related information. 2023 update. Nucleic Acids Res. 2024;52(D1):D239–D44. doi: 10.1093/nar/gkad1083
  • Brachmann CB, Davies A, Cost GJ, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998;14(2):115–132. doi: 10.1002/(SICI)1097-0061(19980130)14:2<115:AID-YEA204>3.0.CO;2-2
  • Hughes TR, Marton MJ, Jones AR, et al. Functional discovery via a compendium of expression profiles. Cell. 2000;102(1):109–126. doi: 10.1016/S0092-8674(00)00015-5
  • Berg MD, Genereaux J, Zhu Y, et al. Acceptor stem differences contribute to species-specific use of yeast and human tRNA(Ser). Genes (Basel). 2018;9(12):612. doi: 10.3390/genes9120612
  • Sprouffske K, Wagner A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinf. 2016;17(1):172. doi: 10.1186/s12859-016-1016-7
  • Hoffman KS, Duennwald ML, Karagiannis J, et al. Saccharomyces cerevisiae Tti2 regulates PIKK proteins and stress response. G3 (Bethesda). 2016;6(6):1649–1659. doi: 10.1534/g3.116.029520
  • Berg MD, Hoffman KS, Genereaux J, et al. Evolving mistranslating tRNAs through a phenotypically ambivalent intermediate in Saccharomyces cerevisiae. Genetics. 2017;206(4):1865–1879. doi: 10.1534/genetics.117.203232
  • Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–311. doi: 10.1093/nar/29.1.308
  • Turowski TW, Tollervey D. Transcription by RNA polymerase III: insights into mechanism and regulation. Biochem Soc Trans. 2016;44(5):1367–1375. doi: 10.1042/BST20160062
  • Roura Frigole H, Camacho N, Castellvi Coma M, et al. tRNA deamination by ADAT requires substrate-specific recognition mechanisms and can be inhibited by tRfs. RNA. 2019;25(5):607–619. doi: 10.1261/rna.068189.118
  • Söll D, Jones DS, Ohtsuka E, et al. Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique. J Mol Biol. 1966;19(2):556–573. doi: 10.1016/S0022-2836(66)80023-2
  • Torres AG, Pineyro D, Rodriguez-Escriba M, et al. Inosine modifications in human tRNAs are incorporated at the precursor tRNA level. Nucleic Acids Res. 2015;43(10):5145–5157. doi: 10.1093/nar/gkv277
  • Clark WC, Evans ME, Dominissini D, et al. tRNA base methylation identification and quantification via high-throughput sequencing. RNA. 2016;22(11):1771–1784. doi: 10.1261/rna.056531.116
  • Harada F, Matsubara M, Kato N. Stable tRNA precursors in HeLa cells. Nucleic Acids Res. 1984;12(24):9263–9269. doi: 10.1093/nar/12.24.9263
  • Geslain R, Cubells L, Bori-Sanz T, et al. Chimeric tRNAs as tools to induce proteome damage and identify components of stress responses. Nucleic Acids Res. 2010;38(5):e30. doi: 10.1093/nar/gkp1083
  • Shcherbakov D, Teo Y, Boukari H, et al. Ribosomal mistranslation leads to silencing of the unfolded protein response and increased mitochondrial biogenesis. Commun Biol. 2019;2(1):381. doi: 10.1038/s42003-019-0626-9
  • Cowan JL, Morley SJ. The proteasome inhibitor, MG132, promotes the reprogramming of translation in C2C12 myoblasts and facilitates the association of hsp25 with the eIF4F complex. Eur J Biochem. 2004;271(17):3596–3611. doi: 10.1111/j.0014-2956.2004.04306.x
  • Cozma E, Rao M, Dusick M, et al. Anticodon sequence determines the impact of mistranslating tRNAAla variants. RNA Biol. 2023;20(1):791–804. doi: 10.1080/15476286.2023.2257471
  • Kim D, Johnson J. Construction, expression, and function of a new yeast amber suppressor, tRNATrpA. J Biol Chem. 1988;263(15):7316–7321. doi: 10.1016/S0021-9258(18)68644-2
  • Hancock SM, Uprety R, Deiters A, et al. Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J Am Chem Soc. 2010;132(42):14819–14824. doi: 10.1021/ja104609m
  • Blanchet S, Cornu D, Argentini M, et al. New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res. 2014;42(15):10061–10072. doi: 10.1093/nar/gku663
  • Dewe JM, Whipple JM, Chernyakov I, et al. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications. RNA. 2012;18(10):1886–1896. doi: 10.1261/rna.033654.112
  • Whipple JM, Lane EA, Chernyakov I, et al. The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA. Genes Dev. 2011;25(11):1173–1184. doi: 10.1101/gad.2050711
  • Haig D, Hurst LD. A quantitative measure of error minimization in the genetic code. J Mol Evol. 1991;33(5):412–417. doi: 10.1007/BF02103132
  • Caldararo F, Di Giulio M. The genetic code is very close to a global optimum in a model of its origin taking into account both the partition energy of amino acids and their biosynthetic relationships. Biosystems. 2022;214:104613. doi: 10.1016/j.biosystems.2022.104613
  • Haumont E, Fournier M, de Henau S, et al. Enzymatic conversion of adenosine to inosine in the wobble position of yeast tRNAAsp: the dependence on the anticodon sequence. Nucleic Acids Res. 1984;12(6):2705–2715. doi: 10.1093/nar/12.6.2705
  • Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci, USA. 1992;89(22):10915–10919. doi: 10.1073/pnas.89.22.10915
  • Vetsigian K, Woese C, Goldenfeld N. Collective evolution and the genetic code. Proc Natl Acad Sci, USA. 2006;103(28):10696–10701. doi: 10.1073/pnas.0603780103
  • Woese CR, Dugre DH, Dugre SA, et al. On the fundamental nature and evolution of the genetic code. Cold Spring Harb Symp Quant Biol. 1966;31:723–736. doi: 10.1101/SQB.1966.031.01.093
  • Then A, Macha K, Ibrahim B, et al. A novel method for achieving an optimal classification of the proteinogenic amino acids. Sci Rep. 2020;10(1):15321. doi: 10.1038/s41598-020-72174-5
  • Cooley RB, Arp DJ, Karplus PA. Evolutionary origin of a secondary structure: π-Helices as Cryptic but widespread insertional variations of α-Helices that enhance protein functionality. J Mol Biol. 2010;404(2):232–246. doi: 10.1016/j.jmb.2010.09.034
  • Fodje MN, Al-Karadaghi S. Occurrence, conformational features and amino acid propensities for the π-helix. Protein Engineering, Design And Selection. 2002;15(5):353–358. doi: 10.1093/protein/15.5.353
  • Hopper AK, Nostramo RT. tRNA processing and subcellular trafficking proteins multitask in pathways for other RNAs. Front Genet. 2019;10:96. doi: 10.3389/fgene.2019.00096
  • Mohler K, Mann R, Bullwinkle TJ, et al. Editing of misaminoacylated tRNA controls the sensitivity of amino acid stress responses in Saccharomyces cerevisiae. Nucleic Acids Res. 2017;45(7):3985–3996. doi: 10.1093/nar/gkx077
  • Paredes JA, Carreto L, Simoes J, et al. Low level genome mistranslations deregulate the transcriptome and translatome and generate proteotoxic stress in yeast. BMC Biol. 2012;10(1):55. doi: 10.1186/1741-7007-10-55
  • Ling J, Reynolds N, Ibba M. Aminoacyl-tRNA synthesis and translational quality control. Annu Rev Microbiol. 2009;63(1):61–78. doi: 10.1146/annurev.micro.091208.073210
  • Aerni HR, Shifman MA, Rogulina S, et al. Revealing the amino acid composition of proteins within an expanded genetic code. Nucleic Acids Res. 2015;43(2):e8. doi: 10.1093/nar/gku1087
  • Dana A, Tuller T. The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res. 2014;42(14):9171–9181. doi: 10.1093/nar/gku646
  • Hirsh D. Tryptophan transfer RNA as the UGA suppressor. J Mol Biol. 1971;58(2):439–458. doi: 10.1016/0022-2836(71)90362-7
  • Schmeing TM, Voorhees RM, Kelley AC, et al. How mutations in tRNA distant from the anticodon affect the fidelity of decoding. Nat Struct Mol Biol. 2011;18(4):432–436. doi: 10.1038/nsmb.2003
  • Tittle JM, Schwark DG, Biddle W, et al. Impact of queuosine modification of endogenous E. coli tRNAs on sense codon reassignment. Front Mol Biosci. 2022;9:938114. doi: 10.3389/fmolb.2022.938114
  • Guo LT, Wang YS, Nakamura A, et al. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution. Proc Natl Acad Sci, USA. 2014;111(47):16724–16729. doi: 10.1073/pnas.1419737111
  • LaRiviere FJ, Wolfson AD, Uhlenbeck OC. Uniform binding of aminoacyl-tRNAs to elongation factor tu by thermodynamic compensation. Science. 2001;294(5540):165–168. doi: 10.1126/science.1064242
  • Guo Q, Gong Q, Tong KL, et al. Recognition by tryptophanyl-tRNA synthetases of discriminator base on tRNATrp from three biological domains. J Biol Chem. 2002;277(16):14343–14349. doi: 10.1074/jbc.M111745200
  • Xu F, Chen X, Xin L, et al. Species-specific differences in the operational RNA code for aminoacylation of tRNA(Trp). Nucleic Acids Res. 2001;29(20):4125–4133. doi: 10.1093/nar/29.20.4125
  • Asahara H, Himeno H, Tamura K, et al. Recognition nucleotides of Escherichia coli tRnaleu and its elements facilitating discrimination from tRnaser and tRNATyr. J Mol Biol. 1993;231(2):219–229. doi: 10.1006/jmbi.1993.1277
  • Giegé R, Eriani G. Transfer RNA Recognition and Aminoacylation by Synthetases. London, England: Encyclopedia of Life Sciences: Macmillan Publishers Ltd, Nature Publishing Group; 2021.
  • Johnson DB, Xu J, Shen Z, et al. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol. 2011;7(11):779–786. doi: 10.1038/nchembio.657
  • O’Donoghue P, Ling J, Wang YS, et al. Upgrading protein synthesis for synthetic biology. Nat Chem Biol. 2013;9(10):594–598. doi: 10.1038/nchembio.1339
  • Peeler JC, Falco JA, Kelemen RE, et al. Generation of recombinant mammalian selenoproteins through genetic code expansion with photocaged selenocysteine. ACS Chem Biol. 2020;15(6):1535–1540. doi: 10.1021/acschembio.0c00147
  • Zheng Y, Mukherjee R, Chin MA, et al. Expanding the scope of single- and double-noncanonical amino acid mutagenesis in mammalian cells using orthogonal polyspecific leucyl-tRNA synthetases. Biochemistry. 2018;57(4):441–445. doi: 10.1021/acs.biochem.7b00952
  • Brocker MJ, Ho JM, Church GM, et al. Recoding the genetic code with selenocysteine. Angew Chem Int Ed Engl. 2014;53(1):319–323. doi: 10.1002/anie.201308584
  • Biddle W, Schwark DG, Schmitt MA, et al. Directed evolution pipeline for the improvement of orthogonal translation machinery for genetic code expansion at sense codons. Front Chem. 2022;10:815788. doi: 10.3389/fchem.2022.815788
  • Zuko A, Mallik M, Thompson R, et al. tRNA overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase. Science. 2021;373(6559):1161–1166. doi: 10.1126/science.abb3356
  • Dolgin E. tRNA therapeutics burst onto startup scene. Nat Biotechnol. 2022;40(3):283–286. doi: 10.1038/s41587-022-01252-y
  • Hou Y, Zhang W, McGilvray PT, et al. Engineered mischarged transfer RNAs for correcting pathogenic missense mutations. Mol Ther. 2023;32(2):352–371. doi: 10.1016/j.ymthe.2023.12.014
  • Mort M, Ivanov D, Cooper DN, et al. A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat. 2008;29(8):1037–1047. doi: 10.1002/humu.20763
  • Lee HL, Dougherty JP. Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol Ther. 2012;136(2):227–266. doi: 10.1016/j.pharmthera.2012.07.007
  • Morkous SS. Treatment with ataluren for Duchenne Muscular Dystrophy. Pediatr Neurol Briefs. 2020;34:12. doi: 10.15844/pedneurbriefs-34-12
  • Lueck JD, Yoon JS, Perales-Puchalt A, et al. Engineered transfer RNAs for suppression of premature termination codons. Nat Commun. 2019;10(1):822. doi: 10.1038/s41467-019-08329-4
  • Roy B, Friesen WJ, Tomizawa Y, et al. Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression. Proc Natl Acad Sci, USA. 2016;113(44):12508–12513. doi: 10.1073/pnas.1605336113
  • Martins-Dias P, Romao L. Nonsense suppression therapies in human genetic diseases. Cell Mol Life Sci. 2021;78(10):4677–4701. doi: 10.1007/s00018-021-03809-7
  • Manuvakhova M, Keeling K, Bedwell DM. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA. 2000;6(7):1044–1055. doi: 10.1017/S1355838200000716
  • Heinemann IU, Rovner AJ, Aerni HR, et al. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion. FEBS Lett. 2012;586(20):3716–3722. doi: 10.1016/j.febslet.2012.08.031
  • Wang J, Zhang Y, Mendonca CA, et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature. 2022;604(7905):343–348. doi: 10.1038/s41586-022-04533-3
  • Bily TMI, Heinemann IU, O’Donoghue P. Missense suppressor tRNA therapeutics correct disease-causing alleles by misreading the genetic code. Mol Ther. 2024;32(2):273–274. doi: 10.1016/j.ymthe.2024.01.001
  • Isaacson JR, Berg MD, Charles B, et al. A novel mistranslating tRNA model in drosophila melanogaster has diverse, sexually dimorphic effects. G3 (Bethesda). 2022;12(5):12. doi: 10.1093/g3journal/jkac035
  • Lant JT, Berg MD, Sze DHW, et al. Visualizing tRNA-dependent mistranslation in human cells. RNA Biol. 2018;15(4–5):567–575. doi: 10.1080/15476286.2017.1379645
  • Grosjean H, Westhof E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res. 2016;44(17):8020–8040. doi: 10.1093/nar/gkw608