576
Views
0
CrossRef citations to date
0
Altmetric
Review

The regulatory roles of small nucleolar RNAs within their host locus

, & ORCID Icon
Pages 1-11 | Accepted 08 Apr 2024, Published online: 16 Apr 2024

References

  • Boivin V, Faucher-Giguère L, Scott M, et al. The cellular landscape of mid-size noncoding RNA. Wiley Interdiscip Rev RNA. 2019;10(4):e1530. doi: 10.1002/wrna.1530
  • Kiss T. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs [Internet]. Embo J. 2001;20(14):3617–3622. doi: 10.1093/emboj/20.14.3617
  • Seal RL, Braschi B, Gray K, et al. Genenames.Org: the HGNC resources in 2023. Nucleic Acids Res. 2023;51(D1):D1003–9. doi: 10.1093/nar/gkac888
  • Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs [internet]. Nat Rev Mol Cell Biol. 2007;8(3):209–220. doi: 10.1038/nrm2124
  • Tollervey D, Kiss T. Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol. 1997;9(3):337–342. doi: 10.1016/S0955-0674(97)80005-1
  • Filipowicz W, Pogači V. Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol. 2002;14:319–327. doi: 10.1016/S0955-0674(02)00334-4
  • Kiss-László Z, Henry Y, Bachellerie JP, et al. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell. 1996;85(7):1077–1088. doi: 10.1016/S0092-8674(00)81308-2
  • Ganot P, Caizergues-Ferrer M, Kiss T. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 1997;11(7):941–956. doi: 10.1101/gad.11.7.941
  • Bohnsack MT, Sloan KE. Modifications in small nuclear RNAs and their roles in spliceosome assembly and function. Biol Chem. 2018;399(11):1265–1276. doi: 10.1515/hsz-2018-0205
  • Sloan KE, Warda AS, Sharma S, et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function [internet]. RNA Biol. 2017;14(9):1138–1152. doi: 10.1080/15476286.2016.1259781
  • Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res. 2020;48(4):1627–1651. doi: 10.1093/nar/gkz1140
  • Falaleeva M, Welden JR, Duncan MJ, et al. C/D-box snoRNAs form methylating and non-methylating ribonucleoprotein complexes: old dogs show new tricks. BioEssays. 2017;39(6):1–28. doi: 10.1002/bies.201600264
  • Bergeron D, Fafard-Couture É, Scott MS. Small nucleolar RNAs: continuing identification of novel members and increasing diversity of their molecular mechanisms of action. Biochem Soc Trans. 2020;48:645–656. doi: 10.1042/BST20191046
  • Zhang M, Li K, Bai J, et al. A snoRNA–tRNA modification network governs codon-biased cellular states. Proc Natl Acad Sci U S A. 2023;120(41):e2312126120. doi: 10.1073/pnas.2312126120
  • Vitali P, Kiss T. Cooperative 2’-o-methylation of the wobble cytidine of human elongator tRnamet(cat) by a nucleolar and a cajal bodyspecific box C/D RNP. Genes Dev. 2019;33:741–746. doi: 10.1101/gad.326363.119
  • Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science. 2006;311(5758):230–232. doi: 10.1126/science.1118265
  • Scott MS, Ono M, Yamada K, et al. Human box C/D snoRNA processing conservation across multiple cell types. Nucleic Acids Res. 2012;40(8):3676. doi: 10.1093/nar/gkr1233
  • Falaleeva M, Pages A, Matuszek Z, et al. Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. Proc Natl Acad Sci U S A. 2016;113(12):E1625–34. doi: 10.1073/pnas.1519292113
  • Sharma E, Sterne-Weiler T, O’Hanlon D, et al. Global mapping of human RNA-RNA interactions. Mol Cell. 2016;62(4):618–626. doi: 10.1016/j.molcel.2016.04.030
  • Elliott BA, Ho HT, Ranganathan SV, et al. Modification of messenger RNA by 2′-O-methylation regulates gene expression in vivo. Nat Commun. 2019;10(1):10. doi: 10.1038/s41467-019-11375-7
  • Bortolin-Cavaillé ML, Quillien A, Gamage ST, et al. Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution. Nucleic Acids Res. 2022;50(11):6284. doi: 10.1093/nar/gkac404
  • Sharma S, Yang J, van Nues R, et al. Specialized box C/D snoRnps act as antisense guides to target RNA base acetylation. PloS Genet. 2017;13(5):e1006804. doi: 10.1371/journal.pgen.1006804
  • Dieci G, Preti M, Montanini B. Eukaryotic snoRnas: A paradigm for gene expression flexibility. Genomics. 2009;94(2):83–88. doi: 10.1016/j.ygeno.2009.05.002
  • Fafard-Couture É, Bergeron D, Couture S, et al. Annotation of snoRNA abundance across human tissues reveals complex snoRNA-host gene relationships. Genome Biol. 2021;22(1):22. doi: 10.1186/s13059-021-02391-2
  • Ooi SL, Samarsky DA, Fournier MJ, et al. Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. RNA. 1998;4(9):1096. doi: 10.1017/S1355838298980785
  • Yang L. Splicing noncoding RNAs from the inside out. Wiley Interdiscip Rev RNA. 2015;6(6):651–660. doi: 10.1002/wrna.1307
  • Caffarelli E, Arese M, Santoro B, et al. In vitro study of processing of the intron-encoded U16 small nucleolar RNA in xenopus laevis. Mol Cell Biol. 1994;14(5):2966–2974. doi: 10.1128/MCB.14.5.2966
  • Hirose T, Shu MD, Steitz JA. Splicing-dependent and -independent modes of assembly for intron-encoded box C/D snoRnps in mammalian cells. Mol Cell. 2003;12(1):113–123. doi: 10.1016/S1097-2765(03)00267-3
  • Weinstein LB, Steitz JA. Guided tours: from precursor snoRNA to functional snoRNP. Curr Opin Cell Biol. 1999;11(3):378–384. doi: 10.1016/S0955-0674(99)80053-2
  • Li SG, Zhou H, Luo YP, et al. Identification and functional analysis of 20 box H/ACA small nucleolar RNAs (snoRNAs) from schizosaccharomyces pombe. J Biol Chem. 2005;280(16):16446–16455. doi: 10.1074/jbc.M500326200
  • Brown JWS, Clark GP, Leader DJ, et al. Multiple snoRNA gene clusters from Arabidopsis. RNA. 2001;7:1817.
  • Leader DJ, Clark GP, Watters J, et al. Clusters of multiple different small nucleolar RNA genes in plants are expressed as and processed from polycistronic pre-snoRnas. Embo J. 1997;16(18):5742. doi: 10.1093/emboj/16.18.5742
  • Zemann A, Op de Bekke A, Kiefmann M, et al. Evolution of small nucleolar RNAs in nematodes. Nucleic Acids Res. 2006;34(9):2676–2685. doi: 10.1093/nar/gkl359
  • Shao P, Yang JH, Zhou H, et al. Genome-wide analysis of chicken snoRnas provides unique implications for the evolution of vertebrate snoRnas. BMC Genomics. 2009;10(1):10. doi: 10.1186/1471-2164-10-86
  • Weber MJ. Mammalian small nucleolar RNAs are mobile genetic elements. PloS Genet. 2006;2(12):1984–1997. doi: 10.1371/journal.pgen.0020205
  • Bergeron D, Laforest C, Carpentier S, et al. SnoRNA copy regulation affects family size, genomic location and family abundance levels. BMC Genomics. 2021;22(1):1–18. doi: 10.1186/s12864-021-07757-1
  • Martin FJ, Amode MR, Aneja A, et al. Ensembl 2023. Nucleic Acids Res. 2023;51(D1):D933–41. doi: 10.1093/nar/gkac958
  • Schmitz J, Zemann A, Churakov G, et al. Retroposed SNOfall–a mammalian-wide comparison of platypus snoRnas. Genome Res. 2008;18:1005–1010. doi: 10.1101/gr.7177908
  • Bergeron D, Paraqindes H, Fafard-Couture É, et al. snoDB 2.0: an enhanced interactive database, specializing in human snoRNAs. Nucleic Acids Res. 2023;51(D1):D291. doi: 10.1093/nar/gkac835
  • Kalvari I, Nawrocki EP, Argasinska J, et al. Non-coding RNA analysis using the Rfam database. Curr Protoc Bioinforma. 2018;62(1):e51. doi: 10.1002/cpbi.51
  • McCann KL, Kavari SL, Burkholder AB, et al. H/ACA snoRNA levels are regulated during stem cell differentiation. Nucleic Acids Res. 2020;48(15):8686–8703. doi: 10.1093/nar/gkaa612
  • Fafard-Couture É, Jacques PÉ, Scott MS. Motif conservation, stability, and host gene expression are the main drivers of snoRNA expression across vertebrates. Genome Res. 2023;33(4):525–540. doi: 10.1101/gr.277483.122
  • Sklias A, Cruciani S, Marchand V, et al. Comprehensive map of ribosomal 2′-O-methylation and C/D box snoRnas in Drosophila melanogaster. Nucleic Acids Res. 2024. doi:10.1093/nar/gkae139.
  • Deryusheva S, Talhouarne GJS, Gall JG, et al. “Lost and found”: snoRNA annotation in the xenopus genome and implications for evolutionary studies. Mol Biol Evol. 2020;37(1):149. doi: 10.1093/molbev/msz209
  • Chen CL, Liang D, Zhou H, et al. The high diversity of snoRnas in plants: identification and comparative study of 120 snoRNA genes from Oryza sativa. Nucleic Acids Res. 2003;31(10):2601. doi: 10.1093/nar/gkg373
  • Canzler S, Stadler PF, Schor J. The fungal snoRnaome. RNA. 2018;24(3):342–360. doi: 10.1261/rna.062778.117
  • Lykke-Andersen S, Ardal BK, Hollensen AK, et al. Box C/D snoRNP autoregulation by a cis-acting snoRNA in the NOP56 pre-mRNA. Mol Cell. 2018;72(1):99–111.e5. doi: 10.1016/j.molcel.2018.08.017
  • Dunn-Davies H, Dudnakova T, Langhendries J-L, et al. Systematic mapping of small nucleolar RNA targets in human cells. bioRxiv. 2021.
  • Bergeron D, Faucher-Giguère L, Emmerichs AK, et al. Intronic small nucleolar RNAs regulate host gene splicing through base pairing with their adjacent intronic sequences. Genome Biol. 2023;24(1):24. doi: 10.1186/s13059-023-03002-y
  • Warner WA, Spencer DH, Trissal M, et al. Expression profiling of snoRnas in normal hematopoiesis and AML. Blood Adv. 2018;2(2):151–163. doi: 10.1182/bloodadvances.2017006668
  • Boivin V, Deschamps-Francoeur G, Couture S, et al. Simultaneous sequencing of coding and noncoding RNA reveals a human transcriptome dominated by a small number of highly expressed noncoding genes. RNA. 2018;24(7):950–965. doi: 10.1261/rna.064493.117
  • Lykke-Andersen S, Chen Y, Ardal BR, et al. Erratum to human nonsense-mediated RNA decay initiates widely by endonucleolysis and targets snoRNA host genes (Genes and Development, (2014), 28, (2498-2517)) [Internet]. Genes Dev. 2016;30(9):1128–1134. doi: 10.1101/gad.281881.116
  • Nepal C, Hadzhiev Y, Balwierz P, et al. Dual-initiation promoters with intertwined canonical and TCT/TOP transcription start sites diversify transcript processing. Nat Commun. 2020;11(1):168. doi: 10.1038/s41467-019-13687-0
  • Dudnakova T, Dunn-Davies H, Peters R, et al. Mapping targets for small nucleolar RNAs in yeast. Wellcome Open Res. 2018;3:3. doi: 10.12688/wellcomeopenres.14735.2
  • Matveeva A, Vinogradov D, Zhuravlev E, et al. Intron editing reveals SNORD-Dependent maturation of the small nucleolar RNA Host gene GAS5 in human cells. Int J Mol Sci. 2023;24(24):17621. doi: 10.3390/ijms242417621
  • Zacchini F, Venturi G, De Sanctis V, et al. Human dyskerin binds to cytoplasmic H/ACA-box-containing transcripts affecting nuclear hormone receptor dependence. Genome Biol. 2022;23(1):1–27. doi: 10.1186/s13059-022-02746-3
  • Talross GJS, Deryusheva S, Gall JG. Stable lariats bearing a snoRNA (slb-snoRNA) in eukaryotic cells: a level of regulation for guide RNAs. Proc Natl Acad Sci U S A. 2021;118(45):118. doi: 10.1073/pnas.2114156118
  • Liu Y, DeMario S, He K, et al. Splicing inactivation generates hybrid mRNA-snoRNA transcripts targeted by cytoplasmic RNA decay. Proc Natl Acad Sci U S A. 2022;119(31):119. doi: 10.1073/pnas.2202473119
  • Yin Q-F, Yang L, Zhang Y, et al. Long noncoding RNAs with snoRNA ends. Mol Cell. 2012;48(2):219–230. doi: 10.1016/j.molcel.2012.07.033
  • Xing YH, Yao RW, Zhang Y, et al. SLERT Regulates DDX21 rings associated with pol I transcription. Cell. 2017;169(4):664–678.e16. doi: 10.1016/j.cell.2017.04.011
  • Huang W, Sun YM, Pan Q, et al. The snoRNA-like lncRNA LNC-SNO49AB drives leukemia by activating the RNA-editing enzyme ADAR1. Cell Discov. 2022;8(1):117. doi: 10.1038/s41421-022-00460-9
  • Wu H, Yin Q-F, Luo Z, et al. Unusual processing generates SPA LncRNAs that sequester multiple RNA binding proteins. Mol Cell. 2016;64(3):534–548. doi: 10.1016/j.molcel.2016.10.007
  • Talhouarne GJS, Gall JG. Lariat intronic RNAs in the cytoplasm of vertebrate cells. Proc Natl Acad Sci U S A. 2018;115(34):E7970–7. doi: 10.1073/pnas.1808816115
  • Armakola M, Higgins MJ, Figley MD, et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet. 2012;44(12):1302. doi: 10.1038/ng.2434
  • Chabot B, Shkreta L. Defective control of pre–messenger RNA splicing in human disease. J Cell Bio. 2016;212(1):13. doi: 10.1083/jcb.201510032
  • Cassidy SB, Schwartz S, Miller JL, et al. Prader-Willi syndrome. Genet Med. 2012;14(1):10–26. doi: 10.1038/gim.0b013e31822bead0
  • Zhang XO, Yin QF, Wang HB, et al. Species-specific alternative splicing leads to unique expression of sno-lncRNAs. BMC Genomics. 2014;15(1):287. doi: 10.1186/1471-2164-15-287
  • Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2020;22(2):96–118. doi: 10.1038/s41580-020-00315-9
  • Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–447. doi: 10.1038/s41580-022-00566-8
  • Jiang Q, Crews LA, Holm F, et al. RNA editing-dependent epitranscriptome diversity in cancer stem cells. Nat Rev Cancer. 2017;17(6):381. doi: 10.1038/nrc.2017.23
  • West S, Gromak N, Proudfoot NJ. Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nat. 2004;432(7016):522–525. doi: 10.1038/nature03035
  • Luo Y, Li S. Genome-wide analyses of retrogenes derived from the human box H/ACA snoRnas. Nucleic Acids Res. 2007;35(2):559. doi: 10.1093/nar/gkl1086
  • Aw JGA, Shen Y, Wilm A, et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and Regulation. Mol Cell. 2016;62(4):603–617. doi: 10.1016/j.molcel.2016.04.028
  • Schubert T, Pusch MC, Diermeier S, et al. Df31 protein and snoRnas maintain accessible higher-order structures of chromatin. Mol Cell. 2012;48(3):434–444. doi: 10.1016/j.molcel.2012.08.021
  • Bell JC, Jukam D, Teran NA, et al. Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts. Elife. 2018;7. doi: 10.7554/eLife.27024
  • Meng Y, Yi X, Li X, et al. The non-coding RNA composition of the mitotic chromosome by 5′-tag sequencing. Nucleic Acids Res. 2016;44(10):4934. doi: 10.1093/nar/gkw195
  • Han C, Sun LY, Luo XQ, et al. Chromatin-associated orphan snoRNA regulates DNA damage-mediated differentiation via a non-canonical complex. Cell Rep. 2022;38(13):110421. doi: 10.1016/j.celrep.2022.110421
  • Sledziowska M, Winczura K, Jones M, et al. Non-coding RNAs associated with prader–willi syndrome regulate transcription of neurodevelopmental genes in human induced pluripotent stem cells. Hum Mol Genet. 2023;32(4):608–620. doi: 10.1093/hmg/ddac228
  • Petri R, Brattås PL, Sharma Y, et al. LINE-2 transposable elements are a source of functional human microRNAs and target sites. PloS Genet. 2019;15(3):e1008036. doi: 10.1371/journal.pgen.1008036
  • Smalheiser NR, Torvik VI. Mammalian microRNAs derived from genomic repeats. Trends Genet. 2005;21(6):322–326. doi: 10.1016/j.tig.2005.04.008
  • Spengler RM, Oakley CK, Davidson BL. Functional microRNAs and target sites are created by lineage-specific transposition. Hum Mol Genet. 2014;23(7):1783–1793. doi: 10.1093/hmg/ddt569
  • Ohno S. Evolution by gene duplication. New York: Springer-Verlag; 1970. p. 160.
  • Baldini L, Robert A, Charpentier B, et al. Phylogenetic and molecular analyses identify SNORD116 targets involved in the prader–willi syndrome. Mol Biol Evol. 2022;39(1):39. doi: 10.1093/molbev/msab348
  • Kocher MA, Huang FW, Le E, et al. Snord116 post-transcriptionally increases Nhlh2 mRNA stability: implications for human prader-willi syndrome. Hum Mol Genet. 2021;30(12):1101–1110. doi: 10.1093/hmg/ddab103
  • Constância M, Kelsey G, Reik W. Resourceful imprinting. Nat. 2004;432(7013):53–57. doi: 10.1038/432053a
  • Tucci V, Isles AR, Kelsey G, et al. Genomic imprinting and physiological processes in mammals. Cell. 2019;176(5):952–965. doi: 10.1016/j.cell.2019.01.043
  • Cavaillé J, Vitali P, Basyuk E, et al. A novel brain-specific Box C/D small nucleolar RNA processed from tandemly repeated introns of a noncoding RNA gene in rats. J Biol Chem. 2001;276(28):26374–26383. doi: 10.1074/jbc.M103544200
  • Guibert M, Marty-Capelle H, Robert A, et al. Coordinated evolution of the SNORD115 and SNORD116 tandem repeats at the imprinted Prader–Willi/Angelman locus. Nucleic Acids Res Mol Med. 2023;1(1). doi: 10.1093/narmme/ugad003
  • Ohta T. Gene conversion and evolution of gene families: an overview. Genes (Basel). 2010;1(3):349. doi: 10.3390/genes1030349
  • Labialle S, Cavaillé J. Do repeated arrays of regulatory small-RNA genes elicit genomic imprinting? BioEssays. 2011;33(8):565–573. doi: 10.1002/bies.201100032
  • Ondičová M, Oakey RJ, Walsh CP, et al. Is imprinting the result of “friendly fire” by the host defense system? PloS Genet. 2020;16(4):e1008599. doi: 10.1371/journal.pgen.1008599
  • Barlow DP. Methylation and imprinting: From host defense to gene regulation? Science. 1993;260(5106):309–310. doi: 10.1126/science.8469984
  • Wang Q, Chow J, Hong J, et al. Recent acquisition of imprinting at the rodent Sfmbt2 locus correlates with insertion of a large block of miRNAs. BMC Genomics. 2011;12(1):1–11. doi: 10.1186/1471-2164-12-204
  • Noguer-Dance M, Abu-Amero S, Al-Khtib M, et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet. 2010;19(18):3566–3582. doi: 10.1093/hmg/ddq272
  • Kuzmin A, Han Z, Golding MC, et al. The PcG gene Sfmbt2 is paternally expressed in extraembryonic tissues. Gene Expr Patterns. 2008;8(2):107–116. doi: 10.1016/j.modgep.2007.09.005
  • Keshavarz M, Savriama Y, Refki P, et al. Expression of concern: natural copy number variation of tandemly repeated regulatory SNORD RNAs leads to individual phenotypic differences in mice. Mol Ecol. 2021;30(19):4708–4722. doi: 10.1111/mec.16076
  • Nottingham RM, Wu DC, Qin Y, et al. RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA. 2016;22(4):597–613. doi: 10.1261/rna.055558.115
  • Luo QJ, Zhang J, Li P, et al. RNA structure probing reveals the structural basis of Dicer binding and cleavage. Nat Commun. 2021;12(1):1–12. doi: 10.1038/s41467-021-23607-w
  • Aw JGA, Lim SW, Wang JX, et al. Determination of isoform-specific RNA structure with nanopore long reads. Nat Biotechnol. 2020;39(3):336–346. doi: 10.1038/s41587-020-0712-z