264
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Transcriptional landscape of small non-coding RNAs reveals diversity of categories and functions in molluscs

ORCID Icon, , &
Pages 1-13 | Accepted 07 Dec 2022, Published online: 01 May 2024

References

  • Kim N. Small RNAs: classification, biogenesis, and function. Mol Cells. 2005;19(1):1–15. doi: 10.1016/S1016-8478(23)13130-X
  • Carninci P. Molecular biology: the long and short of RNAs. Nature. 2009;457(7232):974–975. doi: 10.1038/457974b
  • Kim V, Han J, Siomi M. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–139. doi: 10.1038/nrm2632
  • Huang SQ, Ichikawa Y, Yoshitake K, et al. Identification and characterization of microRnas and their predicted functions in biomineralization in the pearl oyster (pinctada fucata). Biology-Basel. 2019;8(2):47. doi: 10.3390/biology8020047
  • Xu F, Wang XT, Feng Y, et al. Identification of conserved and novel microRnas in the Pacific oyster Crassostrea gigas by deep sequencing. PLOS One. 2014;9(8):e104371. doi: 10.1371/journal.pone.0104371
  • Chen G, Zhang C, Jiang F, et al. Bioinformatics analysis of hemocyte miRNAs of scallop chlamys farreri against acute viral necrobiotic virus (AVNV). Fish Shellfish Immunol. 2014;37(1):75–86. doi: 10.1016/j.fsi.2014.01.002
  • Biggar K, Kornfeld S, Maistrovski Y, et al. MicroRNA regulation in extreme environments: differential expression of microRNAs in the intertidal snail Littorina littorea during extended periods of freezing and anoxia. Genom Proteom Bioinf. 2012;10(5):302–309. doi: 10.1016/j.gpb.2012.09.002
  • Yu D, Wu HF, Peng X, et al. Profiling of microRnas and mRNAs in marine mussel Mytilus galloprovincialis. Comp Biochem Phys C. 2020;230:108697. doi: 10.1016/j.cbpc.2019.108697
  • Wang YY, Duan SH, Wang GL, et al. Integrated mRNA and miRNA expression profile analysis of female and male gonads in hyriopsis cumingii. Sci Rep. 2021;11(1):665. doi: 10.1038/s41598-020-80264-7
  • Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D162. doi: 10.1093/nar/gky1141
  • Huang SQ, Yoshitake K, Asaduzzaman M, et al. Discovery and functional understanding of miRNAs in molluscs: a genome-wide profiling approach. RNA Biol. 2021;18(11):1–14. doi: 10.1080/15476286.2020.1867798
  • Tóth KF, Pezic D, Stuwe E, et al. The piRNA pathway guards the germline genome against transposable elements. Adv Exp Med Biol. 2016;886:51–77.
  • Sato K, Siomi MC. The piRNA pathway in drosophila ovarian germ and somatic cells. Proc Jpn Acad Ser B. 2020;96(1):32–42. doi: 10.2183/pjab.96.003
  • Lee H, WF G, Shirayama M, et al. C. elegans piRnas mediate the genome-wide surveillance of germline transcripts. Cell. 2012;150(1):78–87. doi: 10.1016/j.cell.2012.06.016
  • Grimson A, Srivastava M, Fahey B, et al. Early origins and evolution of microRNAs and piwi-interacting RNAs in animals. Nature. 2008;455(7217):1193–1197. doi: 10.1038/nature07415
  • Lakshmanan V, Sujith TN, Bansal D, et al. Comprehensive annotation and characterization of planarian tRNA and tRNA-derived fragments (tRfs). RNA. 2021;27(4):477–495. doi: 10.1261/rna.077701.120
  • Waldron FM, Stone GN, Obbard DJ, et al. Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes. PloS Genet. 2018;14(7):e1007533. doi: 10.1371/journal.pgen.1007533
  • Praher D, Zimmermann B, Genikhovich G, et al. Characterization of the piRNA pathway during development of the sea anemone nematostella vectensis. RNA Biol. 2017;14(12):1727–1741. doi: 10.1080/15476286.2017.1349048
  • Nong W, Cao JQ, Li Y, et al. Jellyfish genomes reveal distinct homeobox gene clusters and conservation of small RNA processing. Nat Commun. 2020;11(1):3051. doi: 10.1038/s41467-020-16801-9
  • Lewis S, Quarles K, Yang YJ, et al. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat Ecol Evol. 2018;2(1):174–181. doi: 10.1038/s41559-017-0403-4
  • Armisen J, Gilchrist MJ, Wilczynska A, et al. Abundant and dynamically expressed miRNAs, piRNAs, and other small RNAs in the vertebrate xenopus tropicalis. Genome Res. 2009;19(10):1766–1775. doi: 10.1101/gr.093054.109
  • Yan Z, Hu HY, Jiang X, et al. Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res. 2011;39(15):6596–6607. doi: 10.1093/nar/gkr298
  • Roovers EF, Rosenkranz D, Mahdipour M, et al. Piwi proteins and piRnas in mammalian oocytes and early embryos. Cell Rep. 2015;10(12):2069–2082. doi: 10.1016/j.celrep.2015.02.062
  • Jehn J, Gebert D, Pipilescu F, et al. PIWI genes and piRnas are ubiquitously expressed in mollusks and show patterns of lineage-specific adaptation. Commun Bio. 2018;1(1):137. doi: 10.1038/s42003-018-0141-4
  • Huang SQ, Ichikawa Y, Igarashi Y, et al. Piwi-interacting RNA (piRNA) expression patterns in pearl oyster (pinctada fucata) somatic tissues. Sci Rep. 2019;9(1):247. doi: 10.1038/s41598-018-36726-0
  • Queiroz FR, Portilho LG, Jeremias WJ, et al. Deep sequencing of small RNAs reveals the repertoire of miRNAs and piRnas in Biomphalaria glabrata. Mem Inst Oswaldo Cruz. 2020;115:e190498. doi: 10.1590/0074-02760190498
  • Huang SQ, Ichikawa Y, Yoshitake K, et al. Conserved and widespread expression of piRNA-like molecules and PIWI-like genes reveal dual functions of transposon silencing and gene regulation in Pinctada fucata (Mollusca). Front Mar Sci. 2021;8:730556. doi: 10.3389/fmars.2021.730556
  • Li Y, Sun XQ, Hu XL, et al. Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins. Nat Commun. 2017;8(1):1721. doi: 10.1038/s41467-017-01927-0
  • Sun J, Zhang Y, Xu T, et al. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nat Ecol Evol. 2017;1(5):121. doi: 10.1038/s41559-017-0121
  • Peng J, Li Q, Xu L, et al. Chromosome-level analysis of the Crassostrea hongkongensis genome reveals extensive duplication of immune-related genes in bivalves. Mol Ecol Resour. 2020;20(4):980–994. doi: 10.1111/1755-0998.13157
  • Friedlander MR, Mackowiak SD, Li N, et al. miRdeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40(1):37–52. doi: 10.1093/nar/gkr688
  • Enright A, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol. 2003;5(1):R1. doi: 10.1186/gb-2003-5-1-r1
  • Loher P, Rigoutsos I. Interactive exploration of RNA22 microRNA target predictions. Bioinformatics. 2012;28(24):3322–3323. doi: 10.1093/bioinformatics/bts615
  • Götz S, García-Gómez JM, Terol J, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36(10):3420–3435. doi: 10.1093/nar/gkn176
  • Zhou G, Soufan O, Ewald J, et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acid Res. 2019;47(W1):W234–41. doi: 10.1093/nar/gkz240
  • Shen W, Le S, Li Y, et al. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLOS One. 2016;11(10):e0163962. doi: 10.1371/journal.pone.0163962
  • Gebert D, Hewel C, Rosenkranz D. Unitas: the universal tool for annotation of small RNAs. BMC Genomics. 2017;18(1):644. doi: 10.1186/s12864-017-4031-9
  • Rosenkranz D, Zischler H. proTRAC – a software for probabilistic piRNA cluster detection, visualization and analysis. BMC Bioinf. 2012;13(1):5. doi: 10.1186/1471-2105-13-5
  • Zhang Z, Xu J, Koppetsch BS, et al. Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and tudor domains. Mol Cell. 2011;44(4):572–584. doi: 10.1016/j.molcel.2011.10.011
  • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 2011;12(1):323. doi: 10.1186/1471-2105-12-323
  • Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinform. 2004;5(1):1–14. doi: 10.1002/0471250953.bi0410s05
  • Flynn JM, Hubley R, Goubert C, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci USA. 2020;117(17):9451–9457. doi: 10.1073/pnas.1921046117
  • Zhang GF, Fang XD, Guo XM, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490(7418):49–54. doi: 10.1038/nature11413
  • Wei M, Ge HX, Shao CW, et al. Chromosome-level clam genome helps elucidate the molecular basis of adaptation to a buried lifestyle. iScience. 2020;23(6):101148. doi: 10.1016/j.isci.2020.101148
  • Liu C, Zhang Y, Ren YW, et al. The genome of the golden apple snail Pomacea canaliculata provides insight into stress tolerance and invasive adaptation. Gigascience. 2018;7(9):giy101. doi: 10.1093/gigascience/giy101
  • Prochnik SE, Rokhsar DS, Aboobaker AA. Evidence for a microRNA expansion in the bilaterian ancestor. Dev Genes Evol. 2007;217(1):73–77. doi: 10.1007/s00427-006-0116-1
  • Marco A, Hooks K, Griffiths-Jones S. Evolution and function of the extended miR-2 microRNA family. RNA Biol. 2012;9(3):242–248. doi: 10.4161/rna.19160
  • Kitatani Y, Tezuka A, Hasegawa E, et al. Drosophila miR-87 promotes dendrite regeneration by targeting the transcriptional repressor Tramtrack69. PlOS Genet. 2020;16(8):e1008942. doi: 10.1371/journal.pgen.1008942
  • Chen H, Wang L, Zhou Z, et al. The comprehensive immunomo-dulation of NeurimmiRs in haemocytes of oyster Crassostrea gigas after acetylcholine and norepinephrine stimulation. BMC Genomics. 2015;16(1):942. doi: 10.1186/s12864-015-2150-8
  • Tian R, Zheng Z, Huang R, et al. miR-29a participated in nacre formation and immune response by targeting Y2R in Pinctada martensii. Int J Mol Sci. 2015;16(12):29436–29445. doi: 10.3390/ijms161226182
  • Zheng Z, Du X, Xiong X, et al. PmRunt regulated by Pm-miR-183 participates in nacre formation possibly through promoting the expression of collagen VI-like and Nacrein in pearl oyster pinctada martensii. PLoS One. 2017;12(6):e0178561. doi: 10.1371/journal.pone.0178561
  • Jiao Y, Zheng Z, Tian R, et al. Pm-miR-2305, participates in nacre formation by targeting pearlin in pearl oyster pinctada martensii. Int J Mol Sci. 2015;16(9):21442–21453. doi: 10.3390/ijms160921442
  • Rajasethupathy P, Fiumara F, Sheridan R, et al. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron. 2009;63(6):803–817. doi: 10.1016/j.neuron.2009.05.029
  • Walker S, Spencer GE, Necakpv A, et al. Identification and characterization of microRNAs during retinoic acid-induced regeneration of a molluscan central nervous system. Int J Mol Sci. 2018;19(9):2741. doi: 10.3390/ijms19092741
  • Fan X, Kurgan L. Comprehensive overview and assessment of computational prediction of microRNA targets in animals. Brief Bioinform. 2015;16(5):780–794. doi: 10.1093/bib/bbu044
  • Riffo-Campos AL, Riquelme I, Brebi-Mieville P. Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci. 2016;17(12):1987–2005. doi: 10.3390/ijms17121987
  • Mockly S, Seitz H. Inconsistencies and limitations of current microRNA target identification methods. Methods Mol Biol. 2019;1970:291–314.
  • Quarato P, Singh M, Cornes E, et al. Germline inherited small RNAs facilitate the clearance of untranslated maternal mRNAs in C. elegans embryos. Nat Commun. 2021;12(1):1441. doi: 10.1038/s41467-021-21691-6
  • Houwing S, Kamminga LM, Berezikov E, et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell. 2007;129(1):69–82. doi: 10.1016/j.cell.2007.03.026
  • Yang L, Ge Y, Cheng D, et al. Detection of piRnas in whitespotted bamboo shark liver. Gene. 2016;590(1):51–56. doi: 10.1016/j.gene.2016.06.008
  • Chirn GW, Rahman R, Sytnikova YA, et al. Conserved piRNA expression from a distinct set of piRNA cluster loci in eutherian mammals. PlOS Genet. 2015;11(11):e1005652. doi: 10.1371/journal.pgen.1005652
  • Hirano T, Iwasaki YW, Lin ZY, et al. Small RNA profiling and characterization of piRNA clusters in the adult testes of the common marmoset, a model primate. RNA. 2014;20(8):1223–1237. doi: 10.1261/rna.045310.114
  • Brennecke J, Aravin AA, Stark A, et al. Discrete small RNA-Generating loci as master regulators of transposon activity in Drosophila. Cell. 2007;128(6):1089–1103. doi: 10.1016/j.cell.2007.01.043
  • Girard A, Sachidanandam R, Hannon GJ, et al. A germline-specific class of small RNAs binds mammalian piwi proteins. Nature. 2006;442(7099):199–202. doi: 10.1038/nature04917
  • Izumi N, Tomari Y. Diversity of the piRNA pathway for nonself silencing: worm-specific piRNA biogenesis factors. Genes Dev. 2014;28(7):665–671. doi: 10.1101/gad.241323.114
  • Ross RJ, Weiner MM, Lin HF. PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 2014;6505(7483):353–359. doi: 10.1038/nature12987
  • Vandewege MW, Platt RN, Ray DA, et al. Transposable element targeting by piRnas in Laurasiatherians with distinct transposable element histories. Genome Biol Evol. 2016;8(5):1327–1337. doi: 10.1093/gbe/evw078
  • Onishi R, Yamanaka S, Siomi MC. piRNA- and siRNA-mediated transcriptional repression in Drosophila, mice, and yeast: new insights and biodiversity. EMBO Rep. 2021;22(10):e53062. doi: 10.15252/embr.202153062
  • Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: its biogenesis and functions. Annu Rev Biochem. 2015;84(1):405–433. doi: 10.1146/annurev-biochem-060614-034258
  • Czech B, Munafò M, Ciabrelli F, et al. piRNA-guided genome defense: from biogenesis to silencing. Ann Rev Genet. 2018;52(1):131–157. doi: 10.1146/annurev-genet-120417-031441
  • Fang W, Wang X, Bracht JR, et al. Piwi-interacting RNAs protect DNA against loss during oxytricha genome rearrangement. Cell. 2012;151(6):1243–1255. doi: 10.1016/j.cell.2012.10.045
  • Rajasethupathy P, Antonov I, Sheridan R, et al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell. 2012;149(3):693–707. doi: 10.1016/j.cell.2012.02.057
  • Zhang D, Tu S, Stubna M, et al. The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes. Science. 2018;359(6375):587–592. doi: 10.1126/science.aao2840
  • Cao Z, Rosenkranz D, Wu S, et al. Different classes of small RNAs are essential for head regeneration in the planarian Dugesia japonica. BMC Genomics. 2020;21(1):876. doi: 10.1186/s12864-020-07234-1
  • Leggewie M, Schnettler E. RNAi-mediated antiviral immunity in insects and their possible application. Curr Opin Virol. 2018;32:108–114. doi: 10.1016/j.coviro.2018.10.004
  • Ophinni Y, Palatini U, Hayashi Y, et al. piRNA-guided CRISPR-like immunity in eukaryotes. Trends Immunol. 2019;40(11):998–1010. doi: 10.1016/j.it.2019.09.003
  • Crava CM, Varghese FS, Pischedda E, et al. Population genomics in the arboviral vector Aedes aegypti reveals the genomic architecture and evolution of endogenous viral elements. Mol Ecol. 2021;30(7):1594–1611. doi: 10.1111/mec.15798
  • Halbach R, Miesen P, Joosten J, et al. A satellite repeat-derived piRNA controls embryonic development of aedes. Nature. 2020;580(7802):274–277. doi: 10.1038/s41586-020-2159-2