421
Views
0
CrossRef citations to date
0
Altmetric
Review

Programmable RNA targeting with CRISPR-Cas13

& ORCID Icon
Pages 1-9 | Accepted 01 May 2024, Published online: 19 May 2024

References

  • Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353(6299):aaf5573. doi: 10.1126/science.aaf5573
  • East-Seletsky A, O’Connell MR, Knight SC, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature. 2016;538(7624):270–273. doi: 10.1038/nature19802
  • Smargon AA, Cox DBT, Pyzocha NK, et al. Cas13b is a type VI-B CRISPR-Associated RNA-Guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell. 2017;65(4):618–30 e7. doi: 10.1016/j.molcel.2016.12.023
  • Yan WX, Chong S, Zhang H, et al. Cas13d is a compact RNA-Targeting type VI CRISPR effector positively modulated by a WYL-Domain-containing accessory protein. Mol Cell. 2018;70(2):327–39 e5. doi: 10.1016/j.molcel.2018.02.028
  • Hu Y, Chen Y, Xu J, et al. Metagenomic discovery of novel CRISPR-Cas13 systems. Cell Discov. 2022;8(1):107. doi: 10.1038/s41421-022-00464-5
  • Xu C, Zhou Y, Xiao Q, et al. Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nat Methods. 2021;18(5):499–506. doi: 10.1038/s41592-021-01124-4
  • Knott GJ, East-Seletsky A, Cofsky JC, et al. Guide-bound structures of an RNA-targeting A-cleaving CRISPR–Cas13a enzyme. Nat Struct Mol Biol. 2017;24(10):825–833. doi: 10.1038/nsmb.3466
  • Liu L, Li X, Ma J, et al. The molecular architecture for RNA-Guided RNA cleavage by Cas13a. Cell. 2017;170(4):714–26 e10. doi: 10.1016/j.cell.2017.06.050
  • Liu L, Li X, Wang J, et al. Two distant catalytic sites are responsible for C2c2 RNase activities. Cell. 2017;168(1–2):121–34 e12. doi: 10.1016/j.cell.2016.12.031
  • Zhang B, Ye Y, Ye W, et al. Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d. Nat Commun. 2019;10(1):2544. doi: 10.1038/s41467-019-10507-3
  • Konermann S, Lotfy P, Brideau NJ, et al. Transcriptome engineering with RNA-Targeting type VI-D CRISPR effectors. Cell. 2018;173(3):665–76 e14. doi: 10.1016/j.cell.2018.02.033
  • Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR–Cas13. Nature. 2017;550(7675):280–284. doi: 10.1038/nature24049
  • Che W, Ye S, Cai A, et al. CRISPR-Cas13a targeting the enhancer RNA-SMAD7e inhibits bladder cancer development both in vitro and in vivo. Front Mol Biosci. 2020;7:607740. doi: 10.3389/fmolb.2020.607740
  • Saifullah SM, Suzuki T, Yano S, et al. Effective RNA knockdown using CRISPR-Cas13a and Molecular Targeting of the EML4-ALK Transcript in H3122 lung cancer Cells. Int J Mol Sci. 2020;21(23):21. doi: 10.3390/ijms21238904
  • Li S, Li X, Xue W, et al. Screening for functional circular RNAs using the CRISPR–Cas13 system. Nat Methods. 2021;18(1):51–59. doi: 10.1038/s41592-020-01011-4
  • Abbott TR, Dhamdhere G, Liu YX, et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell. 2020;181(4):865–876.e12. doi: 10.1016/j.cell.2020.04.020
  • Yin L, Zhao F, Sun H, et al. CRISPR-Cas13a inhibits HIV-1 infection. Mol Ther Nucleic Acids. 2020;21:147–155. doi: 10.1016/j.omtn.2020.05.030
  • Cui J, Techakriengkrai N, Nedumpun T, et al. Abrogation of PRRSV infectivity by CRISPR-Cas13b-mediated viral RNA cleavage in mammalian cells. Sci Rep. 2020;10(1):9617. doi: 10.1038/s41598-020-66775-3
  • Chen Y, Jiang H, Wang T, et al. In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRnas’ cleavage by CRISPR/Cas13a system. Antiviral Res. 2020;178:104794. doi: 10.1016/j.antiviral.2020.104794
  • Gao J, Luo T, Lin N, et al. A new tool for CRISPR-Cas13a-based cancer gene therapy. Mol Ther Oncolytics. 2020;19:79–92. doi: 10.1016/j.omto.2020.09.004
  • Jiang W, Li H, Liu X, et al. Precise and efficient silencing of mutant kras G12D by CRISPR-CasRx controls pancreatic cancer progression. Theranostics. 2020;10(25):11507–11519. doi: 10.7150/thno.46642
  • Zhou H, Su J, Hu X, et al. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell. 2020;181(3):590–603 e16. doi: 10.1016/j.cell.2020.03.024
  • Zhou C, Hu X, Tang C, et al. CasRx-mediated RNA targeting prevents choroidal neovascularization in a mouse model of age-related macular degeneration. Natl Sci Rev. 2020;7(5):835–837. doi: 10.1093/nsr/nwaa033
  • Yan Z, Yao Y, Li L, et al. Treatment of autosomal dominant retinitis pigmentosa caused by RHO-P23H mutation with high-fidelity Cas13X in mice. Mol Ther Nucleic Acids. 2023;33:750–761. doi: 10.1016/j.omtn.2023.08.002
  • Guo Y, Han L, Han S, et al. Specific knockdown of Htra2 by CRISPR-CasRx prevents acquired sensorineural hearing loss in mice. Mol Ther Nucleic Acids. 2022;28:643–655. doi: 10.1016/j.omtn.2022.04.014
  • Zheng Z, Li G, Cui C, et al. Preventing autosomal-dominant hearing loss in bth mice with CRISPR/CasRx-based RNA editing. Sig Transduct Target Ther. 2022;7(1):79. doi: 10.1038/s41392-022-00893-4
  • Li J, Shen Z, Liu Y, et al. A high-fidelity RNA-targeting Cas13 restores paternal Ube3a expression and improves motor functions in Angelman syndrome mice. Mol Ther. 2023;31(7):2286–2295. doi: 10.1016/j.ymthe.2023.02.015
  • Morelli KH, Wu Q, Gosztyla ML, et al. An RNA-targeting CRISPR–Cas13d system alleviates disease-related phenotypes in Huntington’s disease models. Nat Neurosci. 2023;26(1):27–38. doi: 10.1038/s41593-022-01207-1
  • Blanchard EL, Vanover D, Bawage SS, et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat Biotechnol. 2021;39(6):717–726. doi: 10.1038/s41587-021-00822-w
  • Li T, Zhang L, Lu T, et al. Engineered extracellular vesicle-delivered CRISPR/CasRx as a novel RNA editing tool. Adv Sci. 2023;10(10):e2206517. doi: 10.1002/advs.202206517
  • Cui Z, Zeng C, Huang F, et al. Cas13d knockdown of lung protease ctsl prevents and treats SARS-CoV-2 infection. Nat Chem Biol. 2022;18(10):1056–1064. doi: 10.1038/s41589-022-01094-4
  • Zeballos CM, Moore HJ, Smith TJ, et al. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. Nat Commun. 2023;14(1):6492. doi: 10.1038/s41467-023-42147-z
  • Powell JE, Lim CKW, Krishnan R, et al. Targeted gene silencing in the nervous system with CRISPR-Cas13. Sci Adv. 2022;8(3):eabk2485. doi: 10.1126/sciadv.abk2485
  • Li M, Li D, Lin L, et al. Precise interference of RNA–protein interaction by CRISPR-Cas13-mediated peptide competition. ACS Synth Biol. 2023;12(10):2827–2833. doi: 10.1021/acssynbio.3c00287
  • Tian S, Zhang B, He Y, et al. CRISPR-iPAS: a novel dCAS13-based method for alternative polyadenylation interference. Nucleic Acids Res. 2022;50(5):e26. doi: 10.1093/nar/gkac108
  • Montagud-Martinez R, Marquez-Costa R, Rodrigo G. Programmable regulation of translation by harnessing the CRISPR-Cas13 system. Chem Commun (Camb). 2023;59(18):2616–2619. doi: 10.1039/D3CC00058C
  • Yang LZ, Wang Y, Li SQ, et al. Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol Cell. 2019;76(6):981–97 e7. doi: 10.1016/j.molcel.2019.10.024
  • Han S, Zhao BS, Myers SA, et al. RNA–protein interaction mapping via MS2- or Cas13-based APEX targeting. Proc Natl Acad Sci U S A. 2020;117(36):22068–22079. doi: 10.1073/pnas.2006617117
  • Tang T, Han Y, Wang Y, et al. Programmable system of Cas13-mediated RNA modification and its biological and biomedical applications. Front Cell Dev Biol. 2021;9:677587. doi: 10.3389/fcell.2021.677587
  • Du M, Jillette N, Zhu JJ, et al. CRISPR artificial splicing factors. Nat Commun. 2020;11(1):2973. doi: 10.1038/s41467-020-16806-4
  • Jacob B, Kamyab J, James G, et al. Programmable multi-kilobase RNA editing using CRISPR-mediated trans-splicing. Preprint at bioRxiv. 2023. doi: 10.1101/2023.08.18.553620
  • Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-Cas13. Science. 2017;358(6366):1019–1027. doi: 10.1126/science.aaq0180
  • Abudayyeh OO, Gootenberg JS, Franklin B, et al. A cytosine deaminase for programmable single-base RNA editing. Science. 2019;365(6451):382–386. doi: 10.1126/science.aax7063
  • Wilson C, Chen PJ, Miao Z, et al. Programmable m(6)A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat Biotechnol. 2020;38(12):1431–1440. doi: 10.1038/s41587-020-0572-6
  • Xie S, Jin H, Yang F, et al. Programmable RNA N 1 -methyladenosine demethylation by a Cas13d-directed demethylase. Angew Chem Int Ed Engl. 2021;60(36):19592–19597. doi: 10.1002/anie.202105253
  • Li J, Chen Z, Chen F, et al. Targeted mRNA demethylation using an engineered dCas13b-ALKBH5 fusion protein. Nucleic Acids Res. 2020;48(10):5684–5694. doi: 10.1093/nar/gkaa269
  • Otoupal PB, Cress BF, Doudna JA, et al. CRISPR-RNAa: targeted activation of translation using dCas13 fusions to translation initiation factors. Nucleic Acids Res. 2022;50(15):8986–8998. doi: 10.1093/nar/gkac680
  • Torkzaban B, Kawalerski R, Coller J. Development of a tethered mRNA amplifier to increase protein expression. Biotechnol J. 2022;17(10):e2200214. doi: 10.1002/biot.202200214
  • Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517(7536):583–588. doi: 10.1038/nature14136
  • Shechner DM, Hacisuleyman E, Younger ST, et al. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. 2015;12(7):664–670. doi: 10.1038/nmeth.3433
  • Cao C, Li A, Xu C, et al. Enhancement of protein translation by CRISPR/dCasRx coupled with SINEB2 repeat of noncoding RNAs. Nucleic Acids Res. 2023;51(6):e33. doi: 10.1093/nar/gkad010
  • Ahmed F, Benedito VA, Zhao PX. Mining functional elements in Messenger RNAs: overview, challenges, and perspectives. Front Plant Sci. 2011;2:84. doi: 10.3389/fpls.2011.00084
  • Wessels HH, Mendez-Mancilla A, Guo X, et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat Biotechnol. 2020;38(6):722–727. doi: 10.1038/s41587-020-0456-9
  • Zhao X, Liu L, Lang J, et al. A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett. 2018;431:171–181. doi: 10.1016/j.canlet.2018.05.042
  • Mayes CM, Santarpia J. Evaluating the impact of gRNA SNPs in CasRx activity for reducing viral RNA in HCoV-OC43. Cells. 2022;11(12):11. doi: 10.3390/cells11121859
  • Molina Vargas AM, Sinha S, Osborn R, et al. New design strategies for ultra-specific CRISPR-Cas13a-based RNA detection with single-nucleotide mismatch sensitivity. Nucleic Acids Res. 2024;52(2):921–939. doi: 10.1093/nar/gkad1132
  • Wessels HH, Stirn A, Mendez-Mancilla A, et al. Prediction of on-target and off-target activity of CRISPR–Cas13d guide RNAs using deep learning. Nat Biotechnol. 2023;42(4):628–637. doi: 10.1038/s41587-023-01830-8
  • Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438–442. doi: 10.1126/science.aam9321
  • Casati B, Verdi JP, Hempelmann A, et al. Rapid, adaptable and sensitive Cas13-based COVID-19 diagnostics using ADESSO. Nat Commun. 2022;13(1):3308. doi: 10.1038/s41467-022-30862-y
  • Ke Y, Huang S, Ghalandari B, et al. Hairpin-spacer crRNA-enhanced CRISPR/Cas13a system promotes the specificity of single nucleotide polymorphism (SNP) identification. Adv Sci. 2021;8(6):2003611. doi: 10.1002/advs.202003611
  • Meeske AJ, Nakandakari-Higa S, Marraffini LA. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature. 2019;570(7760):241–245. doi: 10.1038/s41586-019-1257-5
  • Lopatina A, Tal N, Sorek R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu Rev Virol. 2020;7(1):371–384. doi: 10.1146/annurev-virology-011620-040628
  • Kiga K, Tan XE, Ibarra-Chavez R, et al. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat Commun. 2020;11(1):2934. doi: 10.1038/s41467-020-16731-6
  • Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360(6387):439–444. doi: 10.1126/science.aaq0179
  • Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science. 2018;360(6387):444–448. doi: 10.1126/science.aas8836
  • Arizti-Sanz J, Freije CA, Stanton AC, et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat Commun. 2020;11(1):5921. doi: 10.1038/s41467-020-19097-x
  • Lopez-Valls M, Escalona-Noguero C, Rodriguez-Diaz C, et al. CASCADE: naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles. Anal Chim Acta. 2022;1205:339749. doi: 10.1016/j.aca.2022.339749
  • Ortiz-Cartagena C, Fernandez-Garcia L, Blasco L, et al. Reverse transcription-loop-mediated isothermal amplification-CRISPR-Cas13a technology as a promising diagnostic tool for SARS-CoV-2. Microbiol Spectr. 2022;10(5):e0239822. doi: 10.1128/spectrum.02398-22
  • Ackerman CM, Myhrvold C, Thakku SG, et al. Massively multiplexed nucleic acid detection with Cas13. Nature. 2020;582(7811):277–282. doi: 10.1038/s41586-020-2279-8
  • Bruch R, Baaske J, Chatelle C, et al. CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv Mater. 2019;31(51):e1905311. doi: 10.1002/adma.201905311
  • Zhou T, Huang R, Huang M, et al. CRISPR/Cas13a powered portable electrochemiluminescence chip for ultrasensitive and Specific MiRNA Detection. Adv Sci. 2020;7(13):1903661. doi: 10.1002/advs.201903661
  • Chen Y, Yang S, Peng S, et al. N1-methyladenosine detection with CRISPR-Cas13a/C2c2. Chem Sci. 2019;10(10):2975–2979. doi: 10.1039/C8SC03408G
  • Iwasaki RS, Batey RT. SPRINT: a Cas13a-based platform for detection of small molecules. Nucleic Acids Res. 2020;48(17):e101. doi: 10.1093/nar/gkaa673
  • Huynh N, Depner N, Larson R, et al. A versatile toolkit for CRISPR-Cas13-based RNA manipulation in Drosophila. Genome Biol. 2020;21(1):279. doi: 10.1186/s13059-020-02193-y
  • Kushawah G, Hernandez-Huertas L, Abugattas-Nunez Del Prado J, et al. CRISPR-Cas13d induces efficient mRNA knockdown in animal embryos. Dev Cell. 2020;54(6):805–17 e7. doi: 10.1016/j.devcel.2020.07.013
  • Kelley CP, Haerle MC, Wang ET. Negative autoregulation mitigates collateral RNase activity of repeat-targeting CRISPR-Cas13d in mammalian cells. Cell Rep. 2022;40(7):111226. doi: 10.1016/j.celrep.2022.111226
  • Shi P, Murphy MR, Aparicio AO, et al. Collateral activity of the CRISPR/RfxCas13d system in human cells. Commun Biol. 2023;6(1):334. doi: 10.1038/s42003-023-04708-2
  • Wang Q, Liu X, Zhou J, et al. The CRISPR-Cas13a gene-editing system induces collateral cleavage of RNA in glioma cells. Adv Sci. 2019;6(20):1901299. doi: 10.1002/advs.201901299
  • Ai Y, Liang D, Wilusz JE. CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells. Nucleic Acids Res. 2022;50(11):e65. doi: 10.1093/nar/gkac159
  • Webb BA, Chimenti M, Jacobson MP, et al. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer. 2011;11(9):671–677. doi: 10.1038/nrc3110
  • Persi E, Duran-Frigola M, Damaghi M, et al. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat Commun. 2018;9(1):2997. doi: 10.1038/s41467-018-05261-x
  • White KA, Grillo-Hill BK, Barber DL. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J Cell Sci. 2017;130(4):663–669. doi: 10.1242/jcs.195297
  • Parks SK, Chiche J, Pouyssegur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer. 2013;13(9):611–623. doi: 10.1038/nrc3579
  • Swietach P. What is pH regulation, and why do cancer cells need it? Cancer Metast Rev. 2019;38(1–2):5–15. doi: 10.1007/s10555-018-09778-x
  • Baba M, Kojima K, Nakase R, et al. Effects of neutral salts and pH on the activity and stability of human RNase H2. J Biochem. 2017;162(3):211–219. doi: 10.1093/jb/mvx021
  • Wessels HH, Mendez-Mancilla A, Hao Y, et al. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA perturb-seq. Nat Methods. 2023;20(1):86–94. doi: 10.1038/s41592-022-01705-x
  • Wei J, Lotfy P, Faizi K, et al. Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting. Cell Syst. 2023;14(12):1087–102 e13. doi: 10.1016/j.cels.2023.11.006
  • Tong H, Huang J, Xiao Q, et al. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nat Biotechnol. 2023;41(1):108–119. doi: 10.1038/s41587-022-01419-7
  • Ozcan A, Krajeski R, Ioannidi E, et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature. 2021;597(7878):720–725. doi: 10.1038/s41586-021-03886-5
  • Caudron-Herger M, Muller-Ott K, Mallm JP, et al. Coding RNAs with a non-coding function: maintenance of open chromatin structure. Nucleus. 2011;2(5):410–424. doi: 10.4161/nucl.2.5.17736
  • Hall LL, Carone DM, Gomez AV, et al. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell. 2014;156(5):907–919. doi: 10.1016/j.cell.2014.01.042
  • Li Y, Xu J, Guo X, et al. The collateral activity of RfxCas13d can induce lethality in a RfxCas13d knock-in mouse model. Genome Biol. 2023;24(1):20. doi: 10.1186/s13059-023-02860-w
  • Yang J, Song Y, Deng X, et al. Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection. Nat Chem Biol. 2023;19(1):45–54. doi: 10.1038/s41589-022-01135-y
  • Sharma VK, Marla S, Zheng W, et al. CRISPR guides induce gene silencing in plants in the absence of Cas. Genome Biol. 2022;23(1):6. doi: 10.1186/s13059-021-02586-7
  • Tng PYL, Carabajal Paladino L, Verkuijl SAN, et al. Cas13b-dependent and Cas13b-independent RNA knockdown of viral sequences in mosquito cells following guide RNA expression. Commun Biol. 2020;3(1):413. doi: 10.1038/s42003-020-01142-6
  • Qu L, Yi Z, Zhu S, et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat Biotechnol. 2019;37(9):1059–1069. doi: 10.1038/s41587-019-0178-z
  • Wu QW, Kapfhammer JP. The bacterial enzyme Cas13 interferes with neurite outgrowth from cultured cortical neurons. Toxins (Basel). 2021;13(4):262. doi: 10.3390/toxins13040262
  • Wu QW, Kapfhammer JP. The Bacterial Enzyme RfxCas13d is less neurotoxic than PspCas13b and could Be a promising RNA editing and interference tool in the nervous system. Brain Sci. 2021;11(8):11. doi: 10.3390/brainsci11081054
  • Buchman AB, Brogan DJ, Sun R, et al. Programmable RNA targeting using CasRx in flies. Crispr J. 2020;3(3):164–176. doi: 10.1089/crispr.2020.0018
  • Slaymaker IM, Mesa P, Kellner MJ, et al. High-resolution structure of Cas13b and biochemical characterization of RNA targeting and cleavage. Cell Rep. 2019;26(13):3741–51 e5. doi: 10.1016/j.celrep.2019.02.094
  • Zhang C, Konermann S, Brideau N, et al. Structural basis for the RNA-guided ribonuclease activity of CRISPR-Cas13d. Cell. 2018;175(1):212–223.e17. doi: 10.1016/j.cell.2018.09.001
  • Dorrity TJ, Shin H, Wiegand KA, et al. Long 3′UTRs predispose neurons to inflammation by promoting immunostimulatory double-stranded RNA formation. Sci Immunol. 2023;8(88):eadg2979. doi: 10.1126/sciimmunol.adg2979
  • Li Z, Li Z, Cheng X, et al. Intrinsic targeting of host RNA by Cas13 constrains its utility. Nat Biomed Eng. 2023;8(2):177–192. doi: 10.1038/s41551-023-01109-y