1,646
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Applicability of UAV-based optical imagery and classification algorithms for detecting pine wilt disease at different infection stages

ORCID Icon, , , &
Article: 2170479 | Received 13 Sep 2022, Accepted 13 Jan 2023, Published online: 23 Jan 2023

References

  • Carnegie, A. J., T. Venn, S. Lawson, M. Nagel, T. Wardlaw, N. Cameron, and I. Last. 2018. “An Analysis of Pest Risk and Potential Economic Impact of Pine Wilt Disease to Pinus Plantations in Australia.” Australian Forestry 81 (1): 24–23. doi:10.1080/00049158.2018.1440467.
  • Choi, W. I., H. Jung Song, D. Soo Kim, D.S. Lee, C.Y. Lee, Y. Nam, J.B. Kim, and Y.S. Park. 2017. “Dispersal Patterns of Pine Wilt Disease in the Early Stage of Its Invasion in South Korea.” Forests 8 (11): 411. doi:10.3390/f8110411.
  • Escuer, M., M. Arias, and A. Bello. 2004. “Occurrence of the Genus Bursaphelenchus Fuchs, 1937 (Nematoda: Aphelenchida) in Spanish Conifer Forests.” Nematology 6 (1): 155–156. doi:10.1163/156854104323073035.
  • Huang, B. 2020. “Monitoring Bursaphelenchus Xylophilus with Multispectrum Camera in UAV.” Guangxi Forest Science 49 (3): 380–384. doi:10.19692/j.cnki.gfs.2020.03.012.
  • Huang, H., M. Xiaohua, H. Huang, Y. Zhou, W. Zhang, and Y. Huang. 2018. “A Preliminary Study on Monitoring of Dead Pine Trees Caused by Pine Wilt Disease with Fixed-Wing Unmanned Aerial Vehicle.” Journal of Environmental Entomology 40 (2): 306–313. doi:10.3969/j.issn.1674-0858.2018.02.9.
  • Iordache, M.D., M. Vasco, B. Elsa, P. Klaas, and L. Nicolas. 2020. “A Machine Learning Approach to Detecting Pine Wilt Disease Using Airborne Spectral Imagery.” Remote Sensing 12 (14): 2280. doi:10.3390/rs12142280.
  • Jackson, R. D., S. Idso, R. J. Reginato, and Pinter. 1981. “Canopy Temperature as a Crop Water Stress Indicator.” Water Resources Research 17 (4): 1133–1138. doi:10.1029/WR017i004p01133.
  • Ji, S., X. Wei, M. Yang, and Y. Kai. 2013. “3D Convolutional Neural Networks for Human Action Recognition.” IEEE Transactions on Pattern Anal Machine Intellgence 35 (1): 221–231. doi:10.1109/TPAMI.2012.59.
  • Ju, Y., J. Pan, X. Wang, and H. Zhang. 2014. “Detection of Bursaphelenchus Xylophilus Infection in Pinus Massoniana from Hyperspectral Data.” Nematology 16 (10): 1197–1207. doi:10.1163/15685411-00002846.
  • Kim, S.R., E.S. Kim, Y. Nam, W. Il Choi, and C.M. Kim. 2015. “Distribution Characteristics Analysis of Pine Wilt Disease Using Time Series Hyperspectral Aerial Imagery.” Korean Journal of Remote Sensing 31 (5): 385–394. doi:10.7780/kjrs.2015.31.5.3.
  • Kim, S.R., W.K. Lee, C.H. Lim, M. Kim, M. Kafatos, S.H. Lee, and S.S. Lee. 2018. “Hyperspectral Analysis of Pine Wilt Disease to Determine an Optimal Detection Index.” Forests 9 (3): 115. doi:10.3390/f9030115.
  • Kim, S.R., W.K. Lee, K. Nam, Y. Song, Y. Hangnan, M.I. Kim, J.Y. Lee, and S.H. Lee. 2013. “Investigation into Reflectance Characteristics of Trees Infected by Pine Wilt Disease.” Journal of Korean Forestry Society 102 (4): 499–505. doi:10.14578/jkfs.2013.102.4.499.
  • Lee, S. H., H.K. Cho, and W.K. Lee. 2007. “Detection of the Pine Trees Damaged by Pine Wilt Disease Using High Resolution Satellite and Airborne Optical Imagery.” Korean Journal of Remote Sensing 23 (5): 409–420.
  • Liu, W. 2017. “Hyperspectral Estimation Model for Physiological Parameters of Pine Tree Under Bursphelenchus Xylophilus Stress.“ Nanjing Forestry University.
  • Liu, S., J. Xiuliang, C. Nie, S. Wang, Y. Xun, M. Cheng, M. Shao, et al. 2021. “Estimating Leaf Area Index Using Unmanned Aerial Vehicle Data: Shallow Vs. Deep Machine Learning Algorithms.” Plant Physiology 75 (1): 75–83. doi:10.1093/plphys/kiab322/6321903.
  • Morimoto, K., and A. Iwasaki. 1972. “Rôle of Monochamus Alternatus (Coleoptera: Cerambycidae) as a Vector of Bursaphelenchus Lignicolus (Nematoda: Aphelenchoididae).” Journal of the Japanese Forestry Society 54 (6): 177–183. doi:10.11519/jjfs1953.54.6_177.
  • Golomb, O., V. Alchanatis, Y. Cohen, N. Levin, Y. Cohen, and Y. Soroker. 2015. “Detection of Red Palm Weevil Infected Trees Using Thermal Imaging.” In Precision agriculture‘15, 643–650. Wageningen, The Netherlands: Wageningen Academic Publishers.
  • Qin, J., B. Wang, W. Yanlan, Q. Lu, and H. Zhu. 2021. “Identifying Pine Wood Nematode Disease Using UAV Images and Deep Learning Algorithms.” Remote Sensing 13 (2): 162. doi:10.3390/rs13020162.
  • Romero, A., C. Gatta, and G. Camps-Valls. 2015. “Unsupervised Deep Feature Extraction for Remote Sensing Image Classification.” IEEE Transactions on Geoscience and Remote Sensing 54 (3): 1349–1362. doi:10.1109/tgrs.2015.2478379.
  • Simpson, J., E. Fenner Holman, H. Nieto, I. Voelksch, and O. K. Jed. 2021. “High Spatial and Temporal Resolution Energy Flux Mapping of Different Land Covers Using an Off-The-Shelf Unmanned Aerial System.” Remote Sensing 13 (7): 1286. doi:10.3390/rs13071286.
  • Stone, C., and C. Mohammed. 2017. “Application of Remote Sensing Technologies for Assessing Planted Forests Damaged by Insect Pests and Fungal Pathogens: A Review.” Current Forestry Reports 3 (2): 75–92. doi:10.1007/s40725-017-0056-1.
  • Sun, H., Y. Zhou, L. Xiaodong, Y. Zhang, and Y. Wang. 2021. “The Occurrence of Major Forestry Pests Nationwide in 2020 and the Forecast of Their Occurrence in 2021.” Forest Pest and Disease 40 (2): 45–48. doi:10.19688/j.cnki.issn1671-0886.20210004.
  • Takenaka, Y., M. Katoh, S. Deng, and K. Cheung. 2017. “Detecting Forests Damaged by Pine Wilt Disease at the Individual Tree Level Using Airborne Laser Data and Worldview-2/3 Images Over Two Seasons.” ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W3: 181–184. doi:10.5194/isprs-archives-XLII-3-W3-181-2017.
  • Tang, X., Y. Yuan, L. Xiangming, and J. Zhang. 2021. “Maximum Entropy Modeling to Predict the Impact of Climate Change on Pine Wilt Disease in China.” Frontiers in plant science 12: 652500–652513. doi:10.3389/fpls.2021.652500.
  • Wietecha, M., Ł. Jełowicki, K. Mitelsztedt, S. Miścicki, and K. Stereńczak. 2019. “The Capability of Species-Related Forest Stand Characteristics Determination with the Use of Hyperspectral Data.” Remote Sensing of Environment 231: 111232–111244. doi:10.1016/j.rse.2019.111232.
  • Wu, B., A. Liang, H. Zhang, T. Zhu, Z. Zou, D. Yang, W. Tang, J. Li, and S. Jun. 2021. “Application of Conventional UAV-Based High-Throughput Object Detection to the Early Diagnosis of Pine Wilt Disease by Deep Learning.” Forest Ecology and Management 486: 118986. doi:10.1016/j.foreco.2021.118986.
  • Wu, W., Z. Zhang, L. Zheng, C. Han, X. Wang, J. Xu, and X. Wang. 2020. “Research Progress on the Early Monitoring of Pine Wilt Disease Using Hyperspectral Techniques.” Sensors (Basel) 20 (13): 3729–3744. doi:10.3390/s20133729.
  • Xu, H., Y. Luo, and Q. Zhang. 2012. “Changes in Water Conten, Pigments and Antioxidant Enzyme Activities in Pine Needles of Pinus Thunbergii and Pinus Massioniana Affected by Pine Wood Nematode.” Scientia Silvae Sinicae 48 (11): 140–143. doi: CNKI:SUN:LYKE.0.2012-11-026.
  • Xu, H., Y. Luo, T. Zhang, and Y. Shi. 2011. “Changes of Reflectance Spectra of Pine Needles in Different Stage After Being Infected by Pine Wood Nematode.” Spectroscpoy and Spectral Analysis 31 (5): 1352–1356. doi:10.3964/j.issn.1000-0593(2011)05-1352-05.
  • Xu, X., H. Tao, L. Cunjun, C. Cheng, H. Guo, and J. Zhou. 2020. “Detection and Location of Pine Wilt Disease Induced Dead Pine Trees Based on Faster R-CNN.” Transactions of the Chinese Society of Agricultural Engineering 51 (7): 228–236. doi:10.6041/j.issn.1000-1298.2020.07.02.
  • Xu, B., J. Zhexue Huang, G. Williams, Q. Wang, and Y. Yunming. 2012. “Classifying Very High-Dimensional Data with Random Forests Built from Small Subspaces.” International Journal of Data Warehousing and Mining 8 (2): 44–63. doi:10.4018/jdwm.2012040103.
  • Yu, R., Y. Luo, Q. Zhou, X. Zhang, W. Dewei, and L. Ren. 2021. “A Machine Learning Algorithm to Detect Pine Wilt Disease Using UAV-Based Hyperspectral Imagery and LiDar Data at the Tree Level.” International Journal of Applied Earth Observation and Geoinformation 101. 102363–2. doi:10.1016/j.jag.2021.102363.
  • Yu, R., L. Ren, and Y. Luo. 2021. “Early Detection of Pine Wilt Disease in Pinus Tabuliformis in North China Using a Field Portable Spectrometer and UAV-Based Hyperspectral Imagery.” Forest Ecosystems 8 (1). doi:10.1186/s40663-021-00328-6.
  • Zhang, S., J. Huang, J. Hanan, and L. Qin. 2020. “A Hyperspectral GA-PLSR Model for Prediction of Pine Wilt Disease.” Multimedia Tools and Applications 79 (23–24): 16645–16661. doi:10.1007/s11042-019-07976-5.
  • Zhang, B., Y. Huichun, L. Wei, W. Huang, B. Wu, Z. Hao, and H. Sun. 2021. “A Spatiotemporal Change Detection Method for Monitoring Pine Wilt Disease in a Complex Landscape Using High-Resolution Remote Sensing Imagery.” Remote Sensing 13 (11): 2083–3099. doi:10.3390/rs13112083.
  • Zhang, N., Y. Wang, and X. Zhang. 2020. “Extraction of Tree Crowns Damaged by Dendrolimus Tabulaeformis Tsai Et Liu via Spectral-Spatial Classification Using UAV-Based Hyperspectral Images.” Plant Methods 16 (1): 135–153. doi:10.1186/s13007-020-00678-2.
  • Zhang, N., G. Yang, Y. Pan, X. Yang, L. Chen, and C. Zhao. 2020. “A Review of Advanced Technologies and Development for Hyperspectral-Based Plant Disease Detection in the Past Three Decades.” Remote Sensing 12 (19): 3188–3211. doi:10.3390/rs12193188.
  • Zhang, N., X. Zhang, G. Yang, C. Zhu, L. Huo, and H. Feng. 2018. “Assessment of Defoliation During the Dendrolimus Tabulaeformis Tsai Et Liu Disaster Outbreak Using UAV-Based Hyperspectral Images.” Remote Sensing of Environment 217: 323–339. doi:10.1016/j.rse.2018.08.024.
  • Zhang, B., L. Zhao, and X. Zhang. 2020. “Three-Dimensional Convolutional Neural Network Model for Tree Species Classification Using Airborne Hyperspectral Images.” Remote Sensing of Environment 247: 111938–111953. doi:10.1016/j.rse.2020.111938.