1,133
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Coseismic displacement fields and the slip mechanism of the 2021 Mw 6.7 Hovsgol earthquake in Mongolia constrained by Sentinel-1 and ALOS-2 InSAR

Article: 2180026 | Received 31 Aug 2022, Accepted 09 Feb 2023, Published online: 21 Feb 2023

References

  • Alif, S. M., E. I. Fattah, M. Kholil, and O. Anggara. 2021. “Source of the 2019 Mw.9 Banten Intraslab Earthquake Modelled with GPS Data Inversion.” Geodesy and Geodynamics 12 (4): 308–17. doi:10.1016/j.geog.2021.06.001.
  • Arzhannikova, A., S. Arzhannikov, M. Jolivet, R. Vassallo, and A. Chauvet. 2011. “Pliocene to Quaternary Deformation in South East Sayan (Siberia): Initiation of the Tertiary Compressive Phase in the Southern Termination of the Baikal Rift System.” Journal of Asian Earth Sciences 40 (2): 581–594. doi:10.1016/j.jseaes.2010.10.011.
  • Bagnardi, M., and A. Hooper. 2018. “Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach.” Geochemistry, Geophysics, Geosystems 19 (7): 2194–2211. doi:10.1029/2018GC007585.
  • Battogtokh, D., A. Bayasgalan, K. Wang, D. Ganzorig, and J. Bayaraa. 2021. “The 2021 Mw 6.7 Khankh Earthquake in the Khuvsgul Rift, Mongolia.” Mongolian Geoscientist 26 (52): 46–61. doi:10.5564/mgs.v26i52.1361.
  • Bui, L. K., P. V. V. Le, P. D. Dao, N. Q. Long, H. V. Pham, H. H. Tran, and L. Xie. 2021. “Recent Land Deformation Detected by Sentinel-1A InSar Data (2016–2020) Over Hanoi, Vietnam, and the Relationship with Groundwater Level Change.” GIScience & Remote Sensing 58 (2): 161–179. doi:10.1080/15481603.2020.1868198.
  • Calais, E., M. Vergnolle, V. San’kov, A. Lukhnev, A. Miroshnitchenko, S. Amarjargal, and J. Déverchère. 2003. “GPS Measurements of Crustal Deformation in the Baikal-Mongolia Area (1994-2002): Implications for Current Kinematics of Asia.” Journal of Geophysical Research: Solid Earth 108: 2501. doi:10.1029/2002JB002373.
  • Carboni, F., M. Porreca, E. Valerio, M. Mariarosaria, C. De Luca, S. Azzaro, M. Ercoli, and M. R. Barchi. 2022. “Surface Ruptures and Off-Fault Deformation of the October 2016 Central Italy Earthquakes from DInSar Data.” Scientific Reports 12 (1): 3172. doi:10.1038/s41598-022-07068-9.
  • Cheloni, D., E. Serpelloni, R. Devoti, N. D’agostino, G. Pietrantonio, F. Riguzzi, M. Anzidei, et al. 2016. “GPS Observations of Coseismic Deformation Following the 2016, August 24, Mw 6 Amatrice Earthquake (Central Italy): Data, Analysis and Preliminary Fault Model.” Annals of Geophysics 59 (5): 1–8. doi:10.4401/ag-7269.
  • Cigna, F., and D. Tapete. 2021. “Present-Day Land Subsidence Rates, Surface Faulting Hazard and Risk in Mexico City with 2014–2020 Sentinel-1 IW InSar.” Remote Sensing of Environment 253: 112161. doi:10.1016/j.rse.2020.112161.
  • Crowell, B. W. 2021. “Near-Field Strong Ground Motions from GPS-Derived Velocities for 2020 Intermountain Western United States Earthquakes.” Seismological Research Letters 92 (2A): 840–848. doi:10.1785/0220200325.
  • Delouis, B., J. Déverchère, V. Melnikova, N. Radziminovitch, L. Loncke, C. Larroque, J. F. Ritz, and V. San’kov. 2002. “A Reappraisal of the 1950 (Mw 6.9) Mondy Earthquake, Siberia, and Its Relationship to the Strain Pattern at the South-Western End of the Baikal Rift Zone.” Terra Nova 14 (6): 491–500. doi:10.1046/j.1365-3121.2002.00445.x.
  • Elliott, A. J., M. E. Oskin, J. Liu‐zeng, and Y. Shao. 2015. “Rupture Termination at Restraining Bends: The Last Great Earthquake on the Altyn Tagh Fault.” Geophysical Research Letters 42 (7): 2164–2170. doi:10.1002/2015GL063107.
  • Etzelmüller, B., E. S. Flo Heggem, N. Sharkhuu, R. Frauenfelder, A. Kääb, and C. Goulden. 2006. “Mountain Permafrost Distribution Modelling Using a Multi-Criteria Approach in the Hövsgöl Area, Northern Mongolia.” Permafrost and Periglacial Processes 17 (2): 91–104. doi:10.1002/ppp.554.
  • Festa, D., N. Casagli, F. Casu, P. Confuorto, C. De Luca, M. Del Soldato, R. Lanari, M. Manunta, M. Manzo, and F. Raspini. 2022. “Automated Classification of A-DInSar-Based Ground Deformation by Using Random Forest.” GIScience & Remote Sensing 59 (1): 1749–1766. doi:10.1080/15481603.2022.2134561.
  • Fialko, Y., D. Sandwell, M. Simons, and P. Rosen. 2005. “Three-Dimensional Deformation Caused by the Bam, Iran, Earthquake and the Origin of Shallow Slip Deficit.” Nature 435 (7040): 295––299. doi:10.1038/nature03425.
  • Fialko, Y., M. Simons, and D. Agnew. 2001. “The Complete (3‐D) Surface Displacement Field in the Epicentral Area of the 1999 Mw7. 1 Hector Mine Earthquake, California, from Space Geodetic Observations.” Geophysical Research Letters 28 (16): 3063–3066. doi:10.1029/2001GL013174.
  • Fuhrmann, T., and M. C. Garthwaite. 2019. “Resolving Three-Dimensional Surface Motion with InSar: Constraints from Multi-Geometry Data Fusion.” Remote Sensing 11 (3): 241. doi:10.3390/rs11030241.
  • Goldstein, R. M., and C. L. Werner. 1998. “Radar Interferogram Filtering for Geophysical Applications.” Geophysical Research Letters 25 (21): 4035–4038. doi:10.1029/1998GL900033.
  • Gomba, G., F. R. González, and F. D. Zan. 2017. “Ionospheric Phase Screen Compensation for the Sentinel-1 TOPS and ALOS-2 ScanSar Modes.” IEEE Transactions on Geoscience and Remote Sensing 55 (1): 223–235. doi:10.1109/TGRS.2016.2604461.
  • Harris, R. A. 2000. “Earthquake Stress Triggers, Stress Shadows, and Seismic Hazard.” Current Science 79 (9): 1215–1225.
  • He, Y., T. Wang, and L. Zhao. 2022. “The 2021 Mw6.7 Lake Hovsgol (Mongolia) Earthquake: Irregular Normal Faulting with Slip Partitioning Controlled by and Adjacent Strike-Slip Fault.” Remote Sensing 14 (18): 4553. doi:10.3390/rs14184553.
  • He, P., and Y. Wen. 2022. “Lake Ice Deformation on Khovsgol Lake from Sentinel Data Before, During and After the 2021 Mw 6.7 Earthquake in Turt, Mongolia.” Journal of Glaciology 68 (272): 1061–1075. doi:10.1017/jog.2022.17.
  • He, P., Y. Wen, C. Xu, and Y. Chen. 2019. “High-Quality Three-Dimensional Displacement Fields from New-Generation SAR Imagery: Application to the 2017 Ezgeleh, Iran, Earthquake.” Journal of Geodesy 93 (4): 573–591. doi:10.1007/s00190-018-1183-6.
  • Hirose, H., K. Hirahara, F. Kimata, N. Fujii, and S. Miyazaki. 1999. “A Slow Thrust Slip Event Following the Two 1996 Hyuganada Earthquakes Beneath the Bungo Channel, Southwest Japan.” Geophysical Research Letters 26 (21): 3237–3240. doi:10.1029/1999GL010999.
  • Houlié, N., D. Dreger, and A. Kim. 2014. “GPS Source Solution of the 2004 Parkfield Earthquake.” Scientific Reports 4 (1): 3646. doi:10.1038/srep03646.
  • Hu, G., W. Feng, Y. Wang, L. Li, X. He, Ç. Karakaş, and Y. Tian. 2022. “Source Characteristics and Exacerbated Tsunami Hazard of the 2020 Mw 6.9 Samos Earthquake in Eastern Aegean Sea.” Journal of Geophysical Research: Solid Earth 127 (5): e2022JB023961. doi:10.1029/2022JB023961.
  • Hu, J., Z. W. Li, X. L. Ding, J. J. Zhu, L. Zhang, and Q. Sun. 2014. “Resolving Three-Dimensional Surface Displacements from InSar Measurements: A Review.” Earth-Science Reviews 133: 1–17. doi:10.1016/j.earscirev.2014.02.005.
  • Jiang, Z., D. Huang, L. Yuan, A. Hassan, L. Zhang, and Z. Yang. 2018. “Coseismic and Postseismic Deformation Associated with the 2016 Mw 7.8 Kaikoura Earthquake, New Zealand: Fault Movement Investigation and Seismic Hazard Analysis.” Earth, Planets and Space 70 (1): 62. doi:10.1186/s40623-018-0827-3.
  • Jin, Z., and Y. Fialko. 2021. “Coseismic and Early Postseismic Deformation Due to the 2021 M7.4 Maduo (China) Earthquake.” Geophysical Research Letters 48 (21): e2021GL095213. doi:10.1029/2021GL095213.
  • Jin, Z., Y. Fialko, A. Zubovich, and T. Schöne. 2022. “Lithospheric Deformation Due to the 2015 M7.2 Sarez (Pamir) Earthquake Constrained by 5 Years of Space Geodetic Observations.” Journal of Geophysical Research: Solid Earth 127 (4): e2021JB022461. doi:10.1029/2021JB022461.
  • Jolivet, M., S. Arzhannikov, A. Chauvet, A. Arzhannikova, R. Vassallo, N. Kulagina, and V. Akulova. 2013. “Accommodating Large-Scale Intracontinental Extension and Compression in a Single Stress-Field: A Key Example from the Baikal Rift System.” Gondwana Research 24 (3–4): 918–935. doi:10.1016/j.gr.2012.07.017.
  • King, G., and J. Nábělek. 1985. “Role of Fault Bends in the Initiation and Termination of Earthquake Rupture.” Science 228 (4702): 984–987. doi:10.1126/science.228.4702.984.
  • King, G. C. P., R. S. Stein, and J. Lin. 1994. “Static Stress Changes and the Triggering of Earthquakes.” Bulletin of the Seismological Society of America 84 (3): 935–953. doi:10.1785/BSSA0840030935.
  • Kouraev, A. V., E. A. Zakharova, F. Rémy, A. G. Kostianoy, M. N. Shimaraev, N. M. J. Hall, and A. Y. Suknev. 2016. “Giant Ice Rings on Lakes Baikal and Hovsgol: Inventory, Associated Water Structure and Potential Formation Mechanism.” Limnology and Oceanography 61 (3): 1001–1014. doi:10.1002/lno.10268.
  • Lakhote, A., M. G. Thakkar, R. S. Kandregula, C. Jani, G. C. Kothyari, G. Chauhan, and S. Bhandari. 2021. “Estimation of Active Surface Deformation in the Eastern Kachchh Region, Western India: Application of Multi-Sensor DInSar Technique.” Quaternary International 575–576: 130–140. doi:10.1016/j.quaint.2020.07.010.
  • Liang, C., P. Agram, M. Simons, and E. J. Fielding. 2019. “Ionospheric Correction of InSar Time Series Analysis of C-Band Sentinel-1 TOPS Data.” IEEE Transactions of Geoscience and Remote Sensing 57 (9): 6755–6773. doi:10.1109/TGRS.2019.2908494.
  • Li, Y., L. Huang, R. Ding, S. Yang, L. Liu, S. Zhang, and H. Liu. 2021. “Coulomb Stress Changes Associated with the M7.3 Maduo Earthquake and Implications for Seismic Hazards.” Natural Hazards Research 1 (2): 95–101. doi:10.1016/j.nhres.2021.06.003.
  • Liu, J., J. Hu, Z. Li, Z. Ma, J. Shi, W. Xu, and Q. Sun. 2022. “Three-Dimensional Surface Displacements of the 8 January 2022 Mw6.7 Menyuan Earthquake, China from Sentinel-1 and ALOS-2 SAR Observations.” Remote Sensing 14 (6): 1404. doi:10.3390/rs14061404.
  • Liu, G., X. Qiao, P. Yu, Y. Zhou, B. Zhao, and W. Xiong. 2021. “Rupture Kinematics of the 11 January 2021 Mw 6.7 Hovsgol, Mongolia, Earthquake and Implications in the Western Baikal Rift Zone.” Seismological Research Letters 92 (6): 3318–3326. doi:10.1785/0220210061.
  • Liu, M., and S. Stein. 2016. “Mid-Continental Earthquakes: Spatiotemporal Occurrences, Causes, and Hazards.” Earth-Science Reviews 162: 364–386. doi:10.1016/j.earscirev.2016.09.016.
  • Liu, X., W. Xu, N. A. Radziminovich, N. Fang, and L. Xie. 2022. “Transtensional Coseismic Fault Slip of the 2021 Mw 6.7 Turt Earthquake and Heterogeneous Tectonic Stress Surrounding the Hovsgol Basin, Northwest Mongolia.” Tectonophysics 836: 229407. doi:10.1016/j.tecto.2022.229407.
  • Logatchev, N. A. 1993. “History and Geodynamics of the Lake Baikal Rift in the Context of the Eastern Siberia Rift System: A Review.” Bulletin des Centres de recherches exploration-production Elf-Aquitaine 17 (2): 353–370.
  • Lyu, M., Y. Ke, L. Guo, X. Li, L. Zhu, H. Gong, and C. Constantinos. 2020. “Changes in Regional Land Subsidence in Beijing After South-To-North Water Diversion Project Observed Using Satellite Radar Interferometry.” GIScience & Remote Sensing 57 (1): 140–156. doi:10.1080/15481603.2019.1676973.
  • Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute. 1993. “The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry.” Nature 364 (6433): 138–142. doi:10.1038/364138a0.
  • Molnar, P., and P. Tapponnier. 1975. “Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia Can Be Interpreted as Results of the India-Eurasia Collision.” Science 189 (4201): 419–426. doi:10.1126/science.189.4201.419.
  • Okada, Y. 1985. “Surface Deformation Due to Shear and Tensile Faults.” Bulletin of the Seismological Society of America 75 (4): 1135–1154. doi:10.1785/BSSA0750041135.
  • Okada, Y. 1992. “Internal Deformation Due to Shear and Tensile Faults in a Half-Space.” Bulletin of the Seismological Society of America 82 (2): 1018–1040. doi:10.1785/BSSA0820021018.
  • Parsons, T., R. S. Yeats, Y. Yagi, and A. Hussain. 2006. “Static Stress Change from the 8 October, 2005 M = 7.6 Kashmir Earthquake.” Geophysical Research Letters 33 (6): L06304. doi:10.1029/2005GL025429.
  • Petit, C., and J. Déverchère. 2006. “Structure and Evolution of the Baikal Rift: A Synthesis.” Geochemistry, Geophysics, Geosystems 7 (11): Q11016. doi:10.1029/2006GC001265.
  • Qingyun, D., T. Fei, S. Yanhui, G. Rui, L. Sanzhong, F. Changmin, W. Guangzeng, L. Feng, and T. Yuyang. 2021. “Linkage of Deep Lithospheric Structures to Intraplate Earthquakes: A Perspective from Multi-Source and Multi-Scale Geophysical Data in the South China Block.” Earth-Science Reviews 214: 103504. doi:10.1016/j.earscirev.2021.103504.
  • Raspini, F., S. Bianchini, A. Ciampalini, M. Del Soldato, L. Solari, F. Novali, S. Del Conte, A. Rucci, A. Ferretti, and N. Casagli. 2018. “Continuous, Semi-Automatic Monitoring of Ground Deformation Using Sentinel-1 Satellites.” Scientific Reports 8 (1): 7253. doi:10.1038/s41598-018-25369-w.
  • Rosenqvist, A., M. Shimada, S. Suzuki, F. Ohgushi, T. Tadono, M. Watanabe, K. Tsuzuku, T. Watanabe, S. Kamijo, and E. Aoki. 2014. “Operational Performance of the ALOS Global Systematic Acquisition Strategy and Observation Plans for ALOS-2 PALSAR-2.” Remote Sensing of Environment 155: 3–12. doi:10.1016/j.rse.2014.04.011.
  • Sasajima, R., and T. Ito. 2016. “Strain Rate Dependency of Oceanic Intraplate Earthquake b‐values at Extremely Low Strain Rates.” Journal of Geophysical Research: Solid Earth 121 (6): 4523–4537. doi:10.1002/2016JB013221.
  • Scholz, C. H., C. A. Aviles, and S. G. Wesnousky. 1986. “Scaling Differences Between Large Interplate and Intraplate Earthquakes.” Bulletin of the Seismological Society of America 76 (1): 65–70. doi:10.1785/BSSA0760010065.
  • Skordas, E., K. Meyer, R. Olsson, and O. Kulhánek. 1991. “Causality Between Interplate (North Atlantic) and Intraplate (Fennoscandia) Seismicities.” Tectonophysics 185: 295–307. doi:10.1016/0040-1951(91)90450-7.
  • Tapponnier, P., and P. Molnar. 1979. “Active Faulting and Cenozoic Tectonics of the Tien Shan, Mongolia, and Baykal Regions.” Journal of Geophysical Research: Solid Earth 84 (B7): 3425–3459. doi:10.1029/JB084iB07p03425.
  • Timoshkina, E. P., V. O. Mikhailov, V. B. Smirnov, M. S. Volkova, and S. A. Khairetdinov. 2022. “Model of the Rupture Surface of the Khuvsgul Earthquake of January 12, 2021 from InSar Data.” Izvestiya, Physics of the Solid Earth 58 (1): 74–79. doi:10.1134/S1069351322010098.
  • Toda, S., R. S. Stein, K. Richards-Dinger, and S. B. Bozkurt. 2005. “Forecasting the Evolution of Seismicity in Southern California: Animations Built on Earthquake Stress Transfer.” Journal of Geophysical Research: Solid Earth 110 (B5): B05S16. doi:10.1029/2004JB003415.
  • Torres, R., P. Snoeij, D. Geudtner, D. Bibby, M. Davidson, E. Attema, P. Potin, et al. 2012. “GMES Sentinel-1 Mission.” Remote Sensing of Environment 120: 9–24. doi:10.1016/j.rse.2011.05.028.
  • Utkucu, M., H. Durmuş, H. Yalçin, E. Budakoğlu, and E. Işik. 2013. “Coulomb Static Stress Changes Before and After the 23 October 2011 Van, Eastern Turkey, Earthquake (MW= 7.1): Implications for the Earthquake Hazard Mitigation.” Natural Hazards and Earth System Sciences 13 (7): 1889–1902. doi:10.5194/nhess-13-1889-2013.
  • Wang, R., F. Diao, and A. Hoechner. 2013. “SDM―A Geodetic Inversion Code Incorporating with Layered Crust Structure and Curved Fault Geometry.” In EGU General Assembly Conference Abstracts, EGU2013-2411, Vienna, Austria.
  • Wang, C., X. Ding, X. Shan, L. Zhang, and M. Jiang. 2012. “Slip Distribution of the 2011 Tohoku Earthquake Derived from Joint Inversion of GPS, InSar and Seafloor GPS/Acoustic Measurements.” Journal of Asian Earth Sciences 57: 128–136. doi:10.1016/j.jseaes.2012.06.019.
  • Wan, Y., and Z. -K. Shen. 2010. “Static Coulomb Stress Changes on Faults Caused by the 2008 Mw 7.9 Wenchuan, China Earthquake.” Tectonophysics 491 (1–4): 105–118. doi:10.1016/j.tecto.2010.03.017.
  • Weston, J., A. M. G. Ferreira, and G. J. Funning. 2011. “Global Compilation of Interferometric Synthetic Aperture Radar Earthquake Source Models: 1. Comparisons with Seismic Catalogs.” Journal of Geophysical Research 116 (B8): B08408. doi:10.1029/2010JB008131.
  • Wright, T. J., B. E. Parsons, and Z. Lu. 2004. “Toward Mapping Surface Deformation in Three Dimensions Using InSar.” Geophysical Research Letters 31 (1): L01607. doi:10.1029/2003GL018827.
  • Xu, X., D. T. Sandwell, E. Klein, and Y. Bock. 2021. “Integrated Sentinel-1 InSar and GNSS Time-Series Along the San Andreas Fault System.” Journal of Geophysical Research: Solid Earth 126 (11): e2021JB022579. doi:10.1029/2021JB022579.
  • Yang, H., Y. Liu, and J. Lin. 2012. “Effects of Subducted Seamounts on Megathrust Earthquake Nucleation and Rupture Propagation.” Geophysical Research Letters 39 (24): L24302. doi:10.1029/2012GL053892.
  • Yao, S., and H. Yang. 2022. “Hypocentral Dependent Shallow Slip Distribution and Rupture Extents Along a Strike-Slip Fault.” Earth and Planetary Science Letters 578: 117296. doi:10.1016/j.epsl.2021.117296.
  • Zebker, H. A., P. A. Rosen, R. M. Goldstein, A. Gabriel, and C. L. Werner. 1994. “On the Derivation of Coseismic Displacement Fields Using Differential Radar Interferometry: The Landers Earthquake.” Journal of Geophysical Research 99 (B10): 19617–19634. doi:10.1029/94JB01179.
  • Zhang, J., P. He, X. Hu, and Z. Liu. 2021. “Dynamic Lake Ice Movement on Lake Khovsgol, Mongolia, Revealed by Time Series Displacements from Pixel Offset with Sentinel-2 Optical Images.” Remote Sensing 13 (24): 4979. doi:10.3390/rs13244979.
  • Zhang, G., X. Shan, B. Delouis, C. Qu, J. Balestra, Z. Li, Y. Liu, and G. Zhang. 2013. “Rupture History of the 2010 Ms 7.1 Yushu Earthquake by Joint Inversion of Teleseismic Data and InSar Measurements.” Tectonophysics 584: 129–137. doi:10.1016/j.tecto.2012.03.024.
  • Zhang, G., X. Shan, and G. Feng. 2016. “The 3-D Surface Deformation, Coseismic Fault Slip and After-Slip of the 2010 Mw. 9 Yushu Earthquake, Tibet, China.” Journal of Asian Earth Sciences 124: 260–268. doi:10.1016/j.jseaes.2016.05.011.
  • Zhao, L., C. Qu, X. Shan, D. Zhao, W. Gong, and Y. Li. 2021. “Coseismic Deformation and Multi-Fault Slip Model of the 2019 Mindanao Earthquake Sequence Derived from Sentinel-1 and ALOS-2 Data.” Tectonophysics 799: 228707. doi:10.1016/j.tecto.2020.228707.