1,839
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Mapping landslides through a temporal lens: an insight toward multi-temporal landslide mapping using the u-net deep learning model

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2182057 | Received 22 Jul 2022, Accepted 09 Feb 2023, Published online: 13 Mar 2023

References

  • Abraham, N., and N. M. Khan. 2019. A Novel Focal Tversky Loss Function with Improved Attention U-Net for Lesion Segmentation. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), April, 683–19. IEEE. 10.1109/ISBI.2019.8759329
  • Althuwaynee, O. F., B. Pradhan, and S. Lee. 2012. “Application of an Evidential Belief Function Model in Landslide Susceptibility Mapping.” Computers & Geosciences 44: 120–135. doi:10.1016/j.cageo.2012.03.003.
  • Anderson, J. E., and J. E. Perry. 1996. “Characterization of Wetland Plant Stress Using Leaf Spectral Reflectance: Implications for Wetland Remote Sensing.” Wetlands 16 (4): 477–487. doi:10.1007/BF03161337.
  • Ayana, G., K. Dese, and S. W. Choe. 2021 10 February. “Transfer Learning in Breast Cancer Diagnoses via Ultrasound Imaging.” Cancers 134: 1–16. Multidisciplinary Digital Publishing Institute. doi:10.3390/cancers13040738.
  • Azarafza, M., M. Azarafza, H. Akgün, P. M. Atkinson, and R. Derakhshani. 2021. “Deep Learning-Based Landslide Susceptibility Mapping.” Scientific Reports 11 (1): 1–16. doi:10.1038/s41598-021-03585-1.
  • Bai, S., J. Wang, Z. Zhang, and C. Cheng. 2012. “Combined Landslide Susceptibility Mapping After Wenchuan Earthquake at the Zhouqu Segment in the Bailongjiang Basin, China.” CATENA 99: 18–25. doi:10.1016/J.CATENA.2012.06.012.
  • Bottou, L. 2010. Large-Scale Machine Learning with Stochastic Gradient Descent. In Proceedings of COMPSTAT 2010 - 19th International Conference on Computational Statistics, Keynote, Invited and Contributed Papers (pp. 177–186). Physica-Verlag HD. 10.1007/978-3-7908-2604-3_16
  • Catani, F., N. Casagli, L. Ermini, G. Righini, and G. Menduni. 2005. “Landslide Hazard and Risk Mapping at Catchment Scale in the Arno River Basin.” Landslides 2 (4): 329–342. doi:10.1007/s10346-005-0021-0.
  • Challa, H., N. Niu, and R. Johnson .2020. Faulty Requirements Made Valuable: On the Role of Data Quality in Deep Learning. Proceedings - 7th International Workshop on Artificial Intelligence and Requirements Engineering, AIRE 2020, 61–69. Institute of Electrical and Electronics Engineers Inc. 10.1109/AIRE51212.2020.00016
  • Chen, T. H. K., A. V. Prishchepov, R. Fensholt, and C. E. Sabel. 2019. “Detecting and Monitoring Long-Term Landslides in Urbanized Areas with Nighttime Light Data and Multi-Seasonal Landsat Imagery Across Taiwan from 1998 to 2017.” Remote Sensing of Environment 225: 317–327. doi:10.1016/J.RSE.2019.03.013.
  • Dahal, A., H. Tanyas, C. van Westen, M. van der Meijde, P. M. Mai, R. Huser, and L. Lombardo. 2022. “Space-Time Landslide Hazard Modeling via Ensemble Neural Networks.” Retrieved from. doi:10.31223/x5b075.
  • Fan, X., G. Domènech, G. Scaringi, R. Huang, Q. Xu, T. C. Hales, L. Dai, Q. Yang, O. Francis. 2018. “Spatio-Temporal Evolution of Mass Wasting After the 2008 Mw 7.9 Wenchuan Earthquake Revealed by a Detailed Multi-Temporal Inventory.” Landslides 15 (12): 2325–2341. doi:10.1007/s10346-018-1054-5.
  • Fang, B., G. Chen, L. Pan, R. Kou, and L. Wang. 2021. “GAN-Based Siamese Framework for Landslide Inventory Mapping Using Bi-Temporal Optical Remote Sensing Images.” IEEE Geoscience and Remote Sensing Letters 18 (3): 391–395. doi:10.1109/LGRS.2020.2979693.
  • Fan, X., G. Scaringi, G. Domènech, F. Yang, X. Guo, L. Dai, C. He, Q. Xu, R. Huang. 2019 9 January. “Two Multi-Temporal Datasets That Track the Enhanced Landsliding After the 2008 Wenchuan Earthquake.” Earth System Science Data 111: 35–55. Copernicus GmbH. doi:10.5194/essd-11-35-2019.
  • Fan, X., Q. Xu, C. J. van Westen, R. Huang, and R. Tang. 2017. “Characteristics and Classification of Landslide Dams Associated with the 2008 Wenchuan Earthquake.” Geoenvironmental Disasters 4 (1): 1–15. doi:10.1186/s40677-017-0079-8.
  • Fan, X., A. P. Yunus, G. Scaringi, F. Catani, S. Siva Subramanian, Q. Xu, and R. Huang. 2021 16 January. “Rapidly Evolving Controls of Landslides After a Strong Earthquake and Implications for Hazard Assessments.” Geophysical Research Letters 481: e2020GL090509. John Wiley & Sons, Ltd. doi:10.1029/2020GL090509.
  • Ghorbanzadeh, O., T. Blaschke, K. Gholamnia, S. R. Meena, D. Tiede, and J. Aryal. 2019. “Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection.” Remote Sensing 11 (2): 196. doi:10.3390/rs11020196.
  • Ghorbanzadeh, O., A. Crivellari, P. Ghamisi, H. Shahabi, and T. Blaschke. 2021. “A Comprehensive Transferability Evaluation of U-Net and ResU-Net for Landslide Detection from Sentinel-2 Data (Case Study Areas from Taiwan, China, and Japan).” Scientific Reports 11 (1). doi:10.1038/s41598-021-94190-9.
  • Ghorbanzadeh, O., S. R. Meena, H. Shahabi Sorman Abadi, S. Tavakkoli Piralilou, L. Zhiyong, and T. Blaschke. 2021. “Landslide Mapping Using Two Main Deep-Learning Convolution Neural Network Streams Combined by the Dempster-Shafer Model.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14: 452–463. doi:10.1109/JSTARS.2020.3043836.
  • Guzzetti, F., A. C. Mondini, M. Cardinali, F. Fiorucci, M. Santangelo, and K. T. Chang. 2012. “Landslide Inventory Maps: New Tools for an Old Problem.” Earth-Science Reviews 112 (1–2): 42–66. Elsevier. doi:10.1016/j.earscirev.2012.02.001.
  • Guzzetti, F., P. Reichenbach, M. Cardinali, M. Galli, and F. Ardizzone. 2005. “Probabilistic Landslide Hazard Assessment at the Basin Scale.” Geomorphology 72 (1–4): 272–299. doi:10.1016/j.geomorph.2005.06.002.
  • Hervás, J., and P. Bobrowsky. 2009. “Mapping: Inventories, Susceptibility, Hazard and Risk.” Landslides - Disaster Risk Reduction 321–349. doi:10.1007/978-3-540-69970-5_19/COVER.
  • Huete, A. R. 2004. “REMOTE SENSING FOR ENVIRONMENTAL MONITORING.” Environmental Monitoring and Characterization 183–206. doi:10.1016/B978-012064477-3/50013-8.
  • Jaiswal, P., and C. J. van Westen. 2009. “Estimating Temporal Probability for Landslide Initiation Along Transportation Routes Based on Rainfall Thresholds.” Geomorphology 112 (1–2): 96–105. doi:10.1016/j.geomorph.2009.05.008.
  • Jones, J. N., S. J. Boulton, M. Stokes, G. L. Bennett, and M. R. Z. Whitworth. 2021. “30-Year Record of Himalaya Mass-Wasting Reveals Landscape Perturbations by Extreme Events.” Nature Communications 12 (1): 1–15. doi:10.1038/s41467-021-26964-8.
  • Kargel, J. S., G. J. Leonard, D. H. Shugar, U. K. Haritashya, A. Bevington, E. J. Fielding …, and N. Young, M. Geertsema, E. S. Miles, J. Steiner, E. Anderson. 2016. “Geomorphic and Geologic Controls of Geohazards Induced by Nepal’s 2015 Gorkha Earthquake.” Science 351 (6269). doi:10.1126/SCIENCE.AAC8353/SUPPL_FILE/KARGEL-SM.PDF.
  • Kim, M. K., H. G. Sohn, and S. Kim. 2020. “Incorporating the Effect of ALS-Derived DEM Uncertainty for Quantifying Changes Due to the Landslide in 2011.” Mt Umyeon, Seoul GIScience and Remote Sensing 57 (3): 287–301. doi:10.1080/15481603.2019.1687133.
  • Korup, O., T. Görüm, and Y. Hayakawa. 2012. “Without Power? Landslide Inventories in the Face of Climate Change.” Earth Surface Processes and Landforms 37 (1): 92–99. doi:10.1002/ESP.2248.
  • Kukačka, J., V. Golkov, and D. Cremers. 2017. Regularization for Deep Learning: A Taxonomy. Retrieved from https://arxiv.org/abs/1710.10686v1
  • Martha, T. R., P. Roy, R. Mazumdar, K. B. Govindharaj, and K. V. Kumar. 2016. “Spatial Characteristics of Landslides Triggered by the 2015 Mw 7.8 (Gorkha) and Mw 7.3 (Dolakha) Earthquakes in Nepal.” Landslides 14 (2): 697–704. doi:10.1007/S10346-016-0763-X.
  • Meena, S. R., O. Ghorbanzadeh, C. J. van Westen, T. G. Nachappa, T. Blaschke, R. P. Singh, and R. Sarkar. 2021. “Rapid Mapping of Landslides in the Western Ghats (India) Triggered by 2018 Extreme Monsoon Rainfall Using a Deep Learning Approach.” Landslides 18 (5): 1937–1950. doi:10.1007/s10346-020-01602-4.
  • Meena, S. R., and S. T. Piralilou. 2019. “Comparison of Earthquake-Triggered Landslide Inventories: A Case Study of the 2015 Gorkha Earthquake, Nepal.” Geosciences (Switzerland) 9 (10): 437. doi:10.3390/geosciences9100437.
  • Meena, S. R., L. P. Soares, C. H. Grohmann, C. van Westen, K. Bhuyan, R. P. Singh, and F. Catani, F. Catani. 2022. “Landslide Detection in the Himalayas Using Machine Learning Algorithms and U-Net.” Landslides 19 (5): 1209–1229. doi:10.1007/s10346-022-01861-3.
  • Metternicht, G., L. Hurni, and R. Gogu. 2005. “Remote Sensing of Landslides: An Analysis of the Potential Contribution to Geo-Spatial Systems for Hazard Assessment in Mountainous Environments.” Remote Sensing of Environment 98 (2–3): 284–303.
  • Nava, L., K. Bhuyan, S. R. Meena, O. Monserrat, and F. Catani. 2022. “Rapid Mapping of Landslides on SAR Data by Attention U-Net.” Remote Sensing 14 (6): 1449. doi:10.3390/rs14061449.
  • Ozturk, U., E. Bozzolan, E. A. Holcombe, R. Shukla, F. Pianosi, and T. Wagener. 2022. “How Climate Change and Unplanned Urban Sprawl Bring More Landslides.” Nature 608 (7922): 262–265. doi:10.1038/d41586-022-02141-9.
  • Pan, Z., J. Xu, Y. Guo, Y. Hu, and G. Wang. 2020. “Deep Learning Segmentation and Classification for Urban Village Using a Worldview Satellite Image Based on U-Net.” Remote Sensing 12 (10): 1574. doi:10.3390/rs12101574.
  • Pan, S. J., and Q. Yang. 2010. “A Survey on Transfer Learning.” IEEE Transactions on Knowledge and Data Engineering 22 (10): 1345–1359. doi:10.1109/TKDE.2009.191.
  • Planet Team. (2017). Planet Application Program Interface: In Space for Life on Earth. https://api.planet.com
  • Pokharel, B., M. Alvioli, and S. Lim. 2021. “Assessment of Earthquake-Induced Landslide Inventories and Susceptibility Maps Using Slope Unit-Based Logistic Regression and Geospatial Statistics.” Scientific Reports 11 (1): 1–15. doi:10.1038/s41598-021-00780-y.
  • Prakash, N., A. Manconi, and S. Loew. 2020. “Mapping Landslides on EO Data: Performance of Deep Learning Models Vs. Traditional Machine Learning Models.” Remote Sensing 12 (3): 346. doi:10.3390/rs12030346.
  • Prakash, N., A. Manconi, and S. Loew. 2021. “A New Strategy to Map Landslides with a Generalized Convolutional Neural Network.” Scientific Reports 11 (1): 1–15. doi:10.1038/s41598-021-89015-8.
  • Rana, K., N. Malik, and U. Ozturk. 2022. “Landsifier V1.0: A Python Library to Estimate Likely Triggers of Mapped Landslides.” Natural Hazards and Earth System Sciences 22 (11): 3751–3764. doi:10.5194/NHESS-22-3751-2022.
  • Rana, K., U. Ozturk, and N. Malik. 2021. “Landslide Geometry Reveals Its Trigger.” Geophysical Research Letters 48 (4). doi:10.1029/2020GL090848.
  • Roback, K., M. K. Clark, A. J. West, D. Zekkos, G. Li, S. F. Gallen, D. Chamlagain, J. W. Godt. 2018. “The Size, Distribution, and Mobility of Landslides Caused by the 2015 Mw7.8 Gorkha Earthquake, Nepal.” Geomorphology 301: 121–138. doi:10.1016/J.GEOMORPH.2017.01.030.
  • Ronneberger, O., P. Fischer, and T. Brox. 2015. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351, 234–241. Springer Verlag. doi:10.1007/978-3-319-24574-4_28.
  • Rosser, N., M. Kincey, K. Oven, A. Densmore, T. Robinson, D. S. Pujara, and M. R. Dhital, J. Smutny, K. Gurung, S. Lama, M. R. Dhital. 2021. “Changing Significance of Landslide Hazard and Risk After the 2015 Mw 7.8 Gorkha, Nepal Earthquake.” Progress in Disaster Science 10: 100159. doi:10.1016/j.pdisas.2021.100159.
  • Schwanghart, W., M. Ryan, and O. Korup. 2018. “Topographic and Seismic Constraints on the Vulnerability of Himalayan Hydropower.” Geophysical Research Letters 45 (17): 8985–8992. doi:10.1029/2018GL079173.
  • Serey, A., L. Piñero-Feliciangeli, S. A. Sepúlveda, F. Poblete, D. N. Petley, and W. Murphy. 2019. “Landslides Induced by the 2010 Chile Megathrust Earthquake: A Comprehensive Inventory and Correlations with Geological and Seismic Factors.” Landslides 16 (6): 1153–1165. doi:10.1007/S10346-019-01150-6.
  • Shorten, C., and T. M. Khoshgoftaar. 2019. “A Survey on Image Data Augmentation for Deep Learning.” Journal of Big Data 6 (1): 1–48. doi:10.1186/s40537-019-0197-0.
  • Soeters, R., and C. J. Van Westen. 1996. “Slope Instability Recognition, Analysis and Zonation.” Landslides: Investigation and Mitigation 247: 129–177.
  • Spinetti, C., M. Bisson, C. Tolomei, L. Colini, A. Galvani, M. Moro, and M. Saroli, V. Sepe. 2019. “Landslide Susceptibility Mapping by Remote Sensing and Geomorphological Data: Case Studies on the Sorrentina Peninsula (Southern Italy).” GIScience & Remote Sensing 56 (6): 940–965. doi:10.1080/15481603.2019.1587891.
  • Sreedevi, N., and K. Yarrakula. 2016. “Different Techniques for Landslide Zonation Mapping and Landslide Assessment: A Review.” Indian Journal of Science and Technology 9: 47.
  • Sun, Y., A. K. C. Wong, and M. S. Kamel. 2009. “Classification of Imbalanced Data: A Review.” International Journal of Pattern Recognition and Artificial Intelligence 23 (4): 687–719. doi:10.1142/S0218001409007326.
  • Tang, X., Z. Tu, Y. Wang, M. Liu, D. Li, and X. Fan. 2022. “Automatic Detection of Coseismic Landslides Using a New Transformer Method.” Remote Sensing 14 (12): 2884. doi:10.3390/rs14122884.
  • Tang, C., C. J. Van Westen, H. Tanyas, and V. G. Jetten. 2016. “Analysing Post-Earthquake Landslide Activity Using Multi-Temporal Landslide Inventories Near the Epicentral Area of the 2008 Wenchuan Earthquake.” Natural Hazards and Earth System Sciences 16 (12): 2641–2655. doi:10.5194/nhess-16-2641-2016.
  • Tanyaş, H., D. Kirschbaum, T. Görüm, C. J. van Westen, and L. Lombardo. 2021. “New Insight into Post-Seismic Landslide Evolution Processes in the Tropics.” Frontiers in Earth Science 9: 551. doi:10.3389/feart.2021.700546.
  • Tanyaş, H., C. J. van Westen, K. E. Allstadt, M. Anna Nowicki Jessee, T. Görüm, R. W. Jibson, J. W. Godt, H. P. Sato, R. G. Schmitt, O. Marc, N. Hovius. 2017. “Presentation and Analysis of a Worldwide Database of Earthquake-Induced Landslide Inventories.” Journal of Geophysical Research: Earth Surface 122 (10): 1991–2015. doi:10.1002/2017JF004236.
  • USGS. (2015). M 7.8 - 67 Km NNE of Bharatpur, Nepal. Retrieved August 4, 2022: from United States Geological Survey website https://earthquake.usgs.gov/earthquakes/eventpage/us20002926/executive
  • Van Westen, C. J., S. Ghosh, P. Jaiswal, T. R. Martha, and S. L. Kuriakose. 2013. “From Landslide Inventories to Landslide Risk Assessment; an Attempt to Support Methodological Development in India.” Landslide Science and Practice: Landslide Inventory and Susceptibility and Hazard Zoning 1: 3–20. doi:10.1007/978-3-642-31325-7_1.
  • Wang, F., X. Fan, A. P. Yunus, S. Siva Subramanian, A. Alonso-Rodriguez, L. Dai, Q. Xu, R. Huang. 2019. “Coseismic Landslides Triggered by the 2018 Hokkaido, Japan (Mw 6.6), Earthquake: Spatial Distribution, Controlling Factors, and Possible Failure Mechanism.” Landslides 16 (8): 1551–1566. doi:10.1007/S10346-019-01187-7.
  • Wang, H., L. Wang, and L. Zhang. 2022. “Transfer Learning Improves Landslide Susceptibility Assessment.” Gondwana Research. doi:10.1016/j.gr.2022.07.008.
  • Xu, C., S. Xu, F. Dai, Z. Wu, H. He, F. Shi, and X. Xu, S. Xu. 2013. “Application of an Incomplete Landslide Inventory, Logistic Regression Model and Its Validation for Landslide Susceptibility Mapping Related to the May 12, 2008 Wenchuan Earthquake of China.” Natural Hazards 68 (2): 883–900. doi:10.1007/S11069-013-0661-7/FIGURES/7.
  • Zhang, X., M. O. Pun, and M. Liu. 2021. “Semi‐supervised Multi‐temporal Deep Representation Fusion Network for Landslide Mapping from Aerial Orthophotos.” Remote Sensing 13 (4): 1–22. doi:10.3390/rs13040548.