1,358
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Evaluating the potential of burn severity mapping and transferability of Copernicus EMS data using Sentinel-2 imagery and machine learning approaches

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2192157 | Received 01 Nov 2022, Accepted 12 Mar 2023, Published online: 24 Mar 2023

References

  • Abatzoglou, J. T., and A. P. Williams. 2016. “Impact of Anthropogenic Climate Change on Wildfire Across Western US Forests.” Proceedings of the National Academy of Sciences 113 (42): 11770–20. doi:10.1073/pnas.1607171113.
  • Adugna, T., W. Xu, and J. Fan. 2022. “Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images.” Remote Sensing 14 (3): 574. doi:10.3390/rs14030574.
  • Al-Ahmadi, F. S., and A. S. Al-Hames. 2009. “Comparison of Four Classification Methods to Extract Land Use and Land Cover from Raw Satellite Images for Some Remote Arid Areas, Kingdom of Saudi Arabia.” Earth Sciences 20 (1): 167–191. doi:10.4197/Ear.20-1.9.
  • Angelstam, P. K. 1998. “Maintaining and Restoring Biodiversity in European Boreal Forests by Developing Natural Disturbance Regimes.” Journal of Vegetation Science 9 (4): 593–602. doi:10.2307/3237275.
  • Archer, K. J., and R. V. Kimes. 2008. “Empirical Characterization of Random Forest Variable Importance Measures.” Computational Statistics & Data Analysis 52 (4): 2249–2260. doi:10.1016/j.csda.2007.08.015.
  • Bar, S., B. R. Parida, and A. C. Pandey. 2020. “Landsat-8 and Sentinel-2 Based Forest Fire Burn Area Mapping Using Machine Learning Algorithms on GEE Cloud Platform Over Uttarakhand, Western Himalaya.” Remote Sensing Applications: Society and Environment 18: 100324. doi:10.1016/j.rsase.2020.100324.
  • Belgiu, M., and L. Drăguţ. 2016. “Random Forest in Remote Sensing: A Review of Applications and Future Directions.” Isprs Journal of Photogrammetry and Remote Sensing 114: 24–31. doi:10.1016/j.isprsjprs.2016.01.011.
  • Bodí, M. B., D. A. Martin, V. N. Balfour, C. Santín, S. H. Doerr, P. Pereira, A. Cerdà, and J. Mataix-Solera. 2014. “Wildland Fire Ash: Production, Composition and Eco-Hydro-Geomorphic Effects.” Earth-Science Reviews 130: 103–127. doi:10.1016/j.earscirev.2013.12.007.
  • Chen, G., M. R. Metz, D. M. Rizzo, W. W. Dillon, and R. K. Meentemeyer. 2015. “Object-Based Assessment of Burn Severity in Diseased Forests Using High-Spatial and High-Spectral Resolution MASTER Airborne Imagery.” Isprs Journal of Photogrammetry and Remote Sensing 102: 38–47. doi:10.1016/j.isprsjprs.2015.01.004.
  • Choi, B. A. 2021. 2020 Forest Standard Statistics. Daejeon Metropolitan City, Korea Forest Service.
  • Chu, T., and X. Guo. 2013. “Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review.” Remote Sensing 6 (1): 470–520. doi:10.3390/rs6010470.
  • Chuvieco, E., F. Mouillot, G. R. Van der Werf, J. San Miguel, M. Tanase, N. Koutsias, M. García, et al. 2019. “Historical Background and Current Developments for Mapping Burned Area from Satellite Earth Observation.” Remote Sensing of Environment 225: 45–64. doi:10.1016/j.rse.2019.02.013.
  • Collins, L., P. Griffioen, G. Newell, and A. Mellor. 2018. “The Utility of Random Forests for Wildfire Severity Mapping.” Remote Sensing of Environment 216: 374–384. doi:10.1016/j.rse.2018.07.005.
  • Congalton, R. G. 1991. “A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data.” Remote Sensing of Environment 37 (1): 35–46. doi:10.1016/0034-4257(91)90048-B.
  • Cotrufo, S., C. Sandu, F. Giulio Tonolo, and P. Boccardo. 2018. “Building Damage Assessment Scale Tailored to Remote Sensing Vertical Imagery.” European Journal of Remote Sensing 51 (1): 991–1005. doi:10.1080/22797254.2018.1527662.
  • De Luca, G., J. M. Silva, and G. Modica. 2021. “A Workflow Based on Sentinel-1 SAR Data and Open-Source Algorithms for Unsupervised Burned Area Detection in Mediterranean Ecosystems.” GIScience & Remote Sensing 58 (4): 516–541. doi:10.1080/15481603.2021.1907896.
  • De Luca, G., J. M. Silva, and G. Modica. 2022. “Regional-Scale Burned Area Mapping in Mediterranean Regions Based on the Multitemporal Composite Integration of Sentinel-1 and Sentinel-2 Data.” GIScience & Remote Sensing 59 (1): 1678–1705. doi:10.1080/15481603.2022.2128251.
  • Du, P., A. Samat, B. Waske, S. Liu, and Z. Li. 2015. “Random Forest and Rotation Forest for Fully Polarized SAR Image Classification Using Polarimetric and Spatial Features.” Isprs Journal of Photogrammetry and Remote Sensing 105: 38–53. doi:10.1016/j.isprsjprs.2015.03.002.
  • Escuin, S., R. Navarro, and P. Fernández. 2008. “Fire Severity Assessment by Using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) Derived from LANDSAT TM/ETM Images.” International Journal of Remote Sensing 29 (4): 1053–1073. doi:10.1080/01431160701281072.
  • Fernández-Guisuraga, J. M., S. Suárez-Seoane, and L. Calvo. 2019. “Modeling Pinus Pinaster Forest Structure After a Large Wildfire Using Remote Sensing Data at High Spatial Resolution.” Forest Ecology and Management 446: 257–271. doi:10.1016/j.foreco.2019.05.028.
  • Fernández-Manso, A., O. Fernández-Manso, and C. Quintano. 2016. “SENTINEL-2A Red-Edge Spectral Indices Suitability for Discriminating Burn Severity.” International Journal of Applied Earth Observation and Geoinformation 50: 170–175. doi:10.1016/j.jag.2016.03.005.
  • Foody, G. M., and A. Mathur. 2004. “A Relative Evaluation of Multiclass Image Classification by Support Vector Machines.” IEEE Transactions on Geoscience and Remote Sensing 42 (6): 1335–1343. doi:10.1109/TGRS.2004.827257.
  • Gao, B. C. 1996. “Ndwi—a Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space.” Remote Sensing of Environment 58 (3): 257–266. doi:10.1016/S0034-4257(96)00067-3.
  • Gao, J. 2008. “Mapping of Land Degradation from ASTER Data: A Comparison of Object-Based and Pixel-Based Methods.” GIScience & Remote Sensing 45 (2): 149–166. doi:10.2747/1548-1603.45.2.149.
  • Georganos, S., T. Grippa, S. Vanhuysse, M. Lennert, M. Shimoni, S. Kalogirou, and E. Wolff. 2018. “Less is More: Optimizing Classification Performance Through Feature Selection in a Very-High-Resolution Remote Sensing Object-Based Urban Application.” GIScience & Remote Sensing 55 (2): 221–242. doi:10.1080/15481603.2017.1408892.
  • Ghosh, A., F. E. Fassnacht, P. K. Joshi, and B. Koch. 2014. “A Framework for Mapping Tree Species Combining Hyperspectral and LiDar Data: Role of Selected Classifiers and Sensor Across Three Spatial Scales.” International Journal of Applied Earth Observation and Geoinformation 26: 49–63. doi:10.1016/j.jag.2013.05.017.
  • Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak. 1996. “Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS.” Remote Sensing of Environment 58 (3): 289–298. doi:10.1016/S0034-4257(96)00072-7.
  • Heiskanen, J. 2006. “Estimating Aboveground Tree Biomass and Leaf Area Index in a Mountain Birch Forest Using ASTER Satellite Data.” International Journal of Remote Sensing 27 (6): 1135–1158. doi:10.1080/01431160500353858.
  • Huang, C., L. S. Davis, and J. R. G. Townshend. 2002. “An Assessment of Support Vector Machines for Land Cover Classification.” International Journal of Remote Sensing 23 (4): 725–749. doi:10.1080/01431160110040323.
  • Jang, E., Y. Kang, J. Im, D. W. Lee, J. Yoon, and S. K. Kim. 2019. “Detection and Monitoring of Forest Fires Using Himawari-8 Geostationary Satellite Data in South Korea.” Remote Sensing 11 (3): 271. doi:10.3390/rs11030271.
  • Jiao, L., and Y. Bo. 2022. “Near Real-Time Mapping of Burned Area by Synergizing Multiple Satellites Remote-Sensing Data.” GIScience & Remote Sensing 59 (1): 1956–1977. doi:10.1080/15481603.2022.2143690.
  • Jolly, W. M., M. A. Cochrane, P. H. Freeborn, Z. A. Holden, T. J. Brown, G. J. Williamson, and D. M. Bowman. 2015. “Climate-Induced Variations in Global Wildfire Danger from 1979 to 2013.” Nature Communications 6 (1): 1–11. doi:10.1038/ncomms8537.
  • Kalantar, B., N. Ueda, M. O. Idrees, S. Janizadeh, K. Ahmadi, and F. Shabani. 2020. “Forest Fire Susceptibility Prediction Based on Machine Learning Models with Resampling Algorithms on Remote Sensing Data.” Remote Sensing 12 (22): 3682. doi:10.3390/rs12223682.
  • Kamińska, J. A. 2018. “The Use of Random Forests in Modelling Short-Term Air Pollution Effects Based on Traffic and Meteorological Conditions: A Case Study in Wrocław.” Journal of Environmental Management 217: 164–174. doi:10.1016/j.jenvman.2018.03.094.
  • Kokaly, R. F., B. W. Rockwell, S. L. Haire, and T. V. King. 2007. “Characterization of Post-Fire Surface Cover, Soils, and Burn Severity at the Cerro Grande Fire, New Mexico, Using Hyperspectral and Multispectral Remote Sensing.” Remote Sensing of Environment 106 (3): 305–325. doi:10.1016/j.rse.2006.08.006.
  • Kolden, C. A., A. M. Smith, and J. T. Abatzoglou. 2015. “Limitations and Utilisation of Monitoring Trends in Burn Severity Products for Assessing Wildfire Severity in the USA.” International Journal of Wildland Fire 24 (7): 1023–1028. doi:10.1071/WF15082.
  • Lasaponara, R., and B. Tucci. 2019. “Identification of Burned Areas and Severity Using SAR Sentinel-1.” IEEE Geoscience and Remote Sensing Letters 16 (6): 917–921. doi:10.1109/LGRS.2018.2888641.
  • Lee, R. J., and T. E. Chow. 2015. “Post-Wildfire Assessment of Vegetation Regeneration in Bastrop, Texas, Using Landsat Imagery.” GIScience & Remote Sensing 52 (5): 609–626. doi:10.1080/15481603.2015.1055451.
  • Lee, K., J. Ryu, and S. H. Kim. 2022. “Restoration of Damaged Forest and Roles of Remote Sensing.” In Concepts and Applications of Remote Sensing in Forestry, edited by M. N. Suratman, 371–393. Singapore: Springer. doi:10.1007/978-981-19-4200-6_19.
  • Lee, K., H. C. Sung, J. Y. Seo, Y. Yoo, Y. Kim, J. H. Kook, and S. W. Jeon. 2020. “The Integration of Remote Sensing and Field Surveys to Detect Ecologically Damaged Areas for Restoration in South Korea.” Remote Sensing 12 (22): 3687. doi:10.3390/rs12223687.
  • Lentile, L. B., Z. A. Holden, A. M. Smith, M. J. Falkowski, A. T. Hudak, P. Morgan, S. A. Lewis, P. E. Gessler, and N. C. Benson. 2006. “Remote Sensing Techniques to Assess Active Fire Characteristics and Post-Fire Effects.” International Journal of Wildland Fire 15 (3): 319–345. doi:10.1071/WF05097.
  • McFeeters, S. K. 1996. “The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features.” International Journal of Remote Sensing 17 (7): 1425–1432. doi:10.1080/01431169608948714.
  • Millard, K., and M. Richardson. 2015. “On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping.” Remote Sensing 7 (7): 8489–8515. doi:10.3390/rs70708489.
  • Miller, J. D., and A. E. Thode. 2007. “Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR).” Remote Sensing of Environment 109 (1): 66–80. doi:10.1016/j.rse.2006.12.006.
  • Mokroš, M., J. Výbošťok, J. Merganič, M. Hollaus, I. Barton, M. Koreň, J. Tomaštík, and J. Čerňava. 2017. “Early Stage Forest Windthrow Estimation Based on Unmanned Aircraft System Imagery.” Forests 8 (9): 306. doi:10.3390/f8090306.
  • Mountrakis, G., J. Im, and C. Ogole. 2011. “Support Vector Machines in Remote Sensing: A Review.” Isprs Journal of Photogrammetry and Remote Sensing 66 (3): 247. doi:10.1016/j.isprsjprs.2010.11.001.
  • Mpakairi, K. S., H. Ndaimani, and B. Kavhu. 2020. “Exploring the Utility of Sentinel-2 MSI Derived Spectral Indices in Mapping Burned Areas in Different Land-Cover Types.” Scientific African 10: e00565. doi:10.1016/j.sciaf.2020.e00565.
  • Mutanga, O., E. Adam, and M. A. Cho. 2012. “High Density Biomass Estimation for Wetland Vegetation Using WorldView-2 Imagery and Random Forest Regression Algorithm.” International Journal of Applied Earth Observation and Geoinformation 18: 399–406. doi:10.1016/j.jag.2012.03.012.
  • Navarro, G., I. Caballero, G. Silva, P. C. Parra, Á. Vázquez, and R. Caldeira. 2017. “Evaluation of Forest Fire on Madeira Island Using Sentinel-2A MSI Imagery.” International Journal of Applied Earth Observation and Geoinformation 58: 97–106. doi:10.1016/j.jag.2017.02.003.
  • Nazeer, M., J. E. Nichol, and Y. K. Yung. 2014. “Evaluation of Atmospheric Correction Models and Landsat Surface Reflectance Product in an Urban Coastal Environment.” International Journal of Remote Sensing 35 (16): 6271–6291. doi:10.1080/01431161.2014.951742.
  • Olofsson, P., G. M. Foody, M. Herold, S. V. Stehman, C. E. Woodcock, and M. A. Wulder. 2014. “Good Practices for Estimating Area and Assessing Accuracy of Land Change.” Remote Sensing of Environment 148: 42–57. doi:10.1016/j.rse.2014.02.015.
  • Pinty, B., and M. M. Verstraete. 1992. “GEMI: A Non-Linear Index to Monitor Global Vegetation from Satellites.” Vegetatio 101 (1): 15–20. doi:10.1007/BF00031911.
  • Price, O. F., and R. A. Bradstock. 2012. “The Efficacy of Fuel Treatment in Mitigating Property Loss During Wildfires: Insights from Analysis of the Severity of the Catastrophic Fires in 2009 in Victoria, Australia.” Journal of Environmental Management 113: 146–157. doi:10.1016/j.jenvman.2012.08.041.
  • Qian, Y., W. Zhou, J. Yan, W. Li, and L. Han. 2014. “Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery.” Remote Sensing 7 (1): 153–168. doi:10.3390/rs70100153.
  • Rhee, J., and J. Im. 2017. “Meteorological Drought Forecasting for Ungauged Areas Based on Machine Learning: Using Long-Range Climate Forecast and Remote Sensing Data.” Agricultural and Forest Meteorology 237: 105–122. doi:10.1016/j.agrformet.2017.02.011.
  • Rodriguez-Galiano, V. F., B. Ghimire, J. Rogan, M. Chica-Olmo, and J. P. Rigol-Sanchez. 2012. “An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification.” Isprs Journal of Photogrammetry and Remote Sensing 67: 93–104. doi:10.1016/j.isprsjprs.2011.11.002.
  • Rogan, J., and S. R. Yool. 2001. “Mapping Fire-Induced Vegetation Depletion in the Peloncillo Mountains, Arizona and New Mexico.” International Journal of Remote Sensing 22 (16): 3101–3121. doi:10.1080/01431160152558279.
  • Rosa, I. M. D., J. M. C. Pereira, and S. Tarantola. 2011. “Atmospheric Emissions from Vegetation Fires in Portugal (1990–2008): Estimates, Uncertainty Analysis, and Sensitivity Analysis.” Atmospheric Chemistry and Physics 11 (6): 2625–2640. doi:10.5194/acp-11-2625-2011.
  • Roy D, Boschetti L and Trigg S. 2006. “Remote Sensing of Fire Severity: Assessing the Performance of the Normalized Burn Ratio.“ IEEE Geoscience and Remote Sensing Letters 3(1): 112–116. doi: 10.1109/LGRS.2005.858485.
  • Schepers L, Haest B, Veraverbeke S, Spanhove T, Vanden Borre J and Goossens R. 2014. “Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX).“ Remote Sensing 6(3): 1803–1826. doi:10.3390/rs6031803.
  • Schroeder, W., P. Oliva, L. Giglio, B. Quayle, E. Lorenz, and F. Morelli. 2016. “Active Fire Detection Using Landsat-8/OLI Data.” Remote Sensing of Environment 185: 210–220. doi:10.1016/j.rse.2015.08.032.
  • Serra-Burriel, F., P. Delicado, A. T. Prata, and F. M. Cucchietti. 2021. “Estimating Heterogeneous Wildfire Effects Using Synthetic Controls and Satellite Remote Sensing.” Remote Sensing of Environment 265: 112649. doi:10.1016/j.rse.2021.112649.
  • Smith, A. M. S., N. A. Drake, M. J. Wooster, A. T. Hudak, Z. A. Holden, and C. J. Gibbons. 2007. “Production of Landsat ETM+ Reference Imagery of Burned Areas Within Southern African Savannahs: Comparison of Methods and Application to MODIS.” International Journal of Remote Sensing 28 (12): 2753–2775. doi:10.1080/01431160600954704.
  • Stavrakoudis, D., T. Katagis, C. Minakou, and I. Z. Gitas. 2020. “Automated Burned Scar Mapping Using Sentinel-2 Imagery.” Journal of Geographic Information System 12 (3): 221–240. doi:10.4236/jgis.2020.123014.
  • Stevens, J. T., H. D. Safford, and A. M. Latimer. 2014. “Wildfire-Contingent Effects of Fuel Treatments Can Promote Ecological Resilience in Seasonally Dry Conifer Forests.” Canadian Journal of Forest Research 44 (8): 843–854. doi:10.1139/cjfr-2013-0460.
  • Tien Bui, D., K. T. T. Le, V. C. Nguyen, H. D. Le, and I. Revhaug. 2016. “Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression.” Remote Sensing 8 (4): 347. doi:10.3390/rs8040347.
  • Tran, B. N., M. A. Tanase, L. T. Bennett, and C. Aponte. 2018. “Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests.” Remote Sensing 10 (11): 1680. doi:10.3390/rs10111680.
  • Waske, B., S. van der Linden, J. A. Benediktsson, A. Rabe, and P. Hostert. 2010. “Sensitivity of Support Vector Machines to Random Feature Selection in Classification of Hyperspectral Data.” IEEE Transactions on Geoscience and Remote Sensing 48 (7): 2880–2889. doi:10.1109/TGRS.2010.2041784.
  • Wingfield, M. J., E. G. Brockerhoff, B. D. Wingfield, and B. Slippers. 2015. “Planted Forest Health: The Need for a Global Strategy.” Science 349 (6250): 832–836. doi:10.1126/science.aac6674.
  • Yang, X. 2011. “Parameterizing Support Vector Machines for Land Cover Classification.” Photogrammetric Engineering & Remote Sensing 77 (1): 27–37. doi:10.14358/PERS.77.1.27.