2,626
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Spatiotemporal dynamics of vegetation net ecosystem productivity and its response to drought in Northwest China

ORCID Icon, , , , , , & show all
Article: 2194597 | Received 07 Nov 2022, Accepted 20 Mar 2023, Published online: 11 Apr 2023

References

  • Ahlström, A., M. R. Raupach, G. Schurgers, B. Smith, A. Arneth, M. Jung, N. Zeng, et al. 2015. “The Dominant Role of Semi-Arid Ecosystems in the Trend and Variability of the Land CO2 Sink.” Science 348 (6237): 895–22. doi:10.1126/science.aaa1668.
  • Allen, C. D., D. D. Breshears, and N. G. McDowell. 2015. “On Underestimation of Global Vulnerability to Tree Mortality and Forest Die-Off from Hotter Drought in the Anthropocene.” Ecosphere 6: 1–55. doi:10.1890/ES15-00203.1.
  • Cao, J., Q. An, X. Zhang, S. Xu, T. Si, and D. Niyogi. 2021. “Is Satellite Sun-Induced Chlorophyll Fluorescence More Indicative Than Vegetation Indices Under Drought Condition?” The Science of the Total Environment 792: 148396. doi:10.1016/j.scitotenv.2021.148396.
  • Cao, S. P., Y. He, L. F. Zhang, Y. Chen, W. Yang, S. Yao, and Q. Sun. 2021. “Spatiotemporal Characteristics of Drought and Its Impact on Vegetation in the Vegetation Region of Northwest China.” Ecological Indicators 133: 108420. doi:10.1016/j.ecolind.2021.108420.
  • Cao, S. P., L. F. Zhang, Y. He, Y. L. Zhang, Y. Chen, S. Yao, Q. Sun, and Q. Sun. 2022. “Effects and Contributions of Meteorological Drought on Agricultural Drought Under Different Climatic Zones and Vegetation Types in Northwest China.” The Science of the Total Environment 821: 153270. doi:10.1016/j.scitotenv.2022.153270.
  • Chen, X., X. Mo, Y. Zhang, Z. Sun, Y. Liu, S. Hu, and S. Liu. 2019. “Drought Detection and Assessment with Solar-Induced Chlorophyll Fluorescence in Summer Maize Growth Period Over North China Plain.” Ecological Indicators 104: 347–356. doi:10.1016/j.ecolind.2019.05.017.
  • Dobrowski, S. Z., J. C. Pushnik, P. J. Zarco-Tejada, and S. Ustin. 2005. “Simple Reflectance Indices Track Heat and Water Stress -Induced Changes in Steady-State Chlorophyll Fluorescence at the Canopy Scale.” Remote Sensing of Environment 97: 403–414. doi:10.1016/j.rse.2005.05.006.
  • Doughty, C. E., D. B. Metcalfe, C. A. J. Girardin, F. F. Amézquita, D. G. Cabrera, W. H. Huasco, J. E. Silva-Espejo, et al. 2015. “Drought Impact on Forest Carbon Dynamics and Fluxes in Amazonia.” Nature 519: 78–82. doi:10.1038/nature14213.
  • Fernández-Martínez, M., S. Vicca, I. A. Janssens, Sardans, J., Luyssaert, S., Campioli, M., Peñuelas, J., et al. 2014. “Nutrient Availability as the Key Regulator of Global Forest Carbon Balance.” Nature Climate Change 4 (6): 471–476. doi:10.1038/nclimate2177.
  • Ghosh, K. G. 2018. “Analysis of Rainfall Trends and Its Spatial Patterns During the Last Century Over the Gangetic West Bengal, Eastern India.” Journal of Geovisualization and Spatial Analysis 2 (2). doi:10.1007/s41651-018-0022-x.
  • Gonsamo, A., J. M. Chen, L. He, Y. Sun, C. Rogers, and J. Liu. 2019. “Exploring SMAP and OCO-2 Observations to Monitor Soil Moisture Control on Photosynthetic Activity of Global Drylands and Croplands.” Remote Sensing of Environment 232: 111314. doi:10.1016/j.rse.2019.111314.
  • Gou, Q. Q., J. J. Qu, Z. W. Han, and J. H. Xiao. 2013. “Progress of Carbon Cycle Research in Arid and Semi-Arid Areas Ecosystem of China.” Chinese Agricultural Science Bulletin 35: 205–210.
  • Guanter, L., L. Alonso, L. Gomez-Chova, J. Amorós-López, J. Vila, and J. Moreno. 2007. “Estimation of Solar-Induced Vegetation Fluorescence from Space Measurements.” Geophysical Research Letters 34: L08401. doi:10.1029/2007GL029289.
  • Guanter, L., Y. G. Zhang, M. Jung, J. Joiner, M. Voigt, J. A. Berry, C. Frankenberg, et al. 2014. “Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence.” Proceedings of the National Academy of Sciences of the United States of America 111: E1327–1333. doi:10.1073/pnas.1320008111.
  • Guo, H., A. Bao, T. Liu, Ndayisaba, F., Jiang, L., Zheng, G., De Maeyer, P., et al. 2019. “Determining Variable Weights for an Optimal Scaled Drought Condition Index (OSDCI): Evaluation in Central Asia.” Remote Sensing of Environment 231: 111220. doi:10.1016/j.rse.2019.111220.
  • Hargreaves, G. H., and Z. A. Samani. 1985. “Reference Crop Evapotranspiration from Temperature.” Applied Engineering in Agriculture 1: 96–99. doi:10.13031/2013.26773.
  • He, Y., T. B. Yang, J. Qin, J. Chen, W. W. Shao, and W. -W. Shao. 2015. “Glacier Variation in Response to Climate Change in Chinese Tianshan Mountains from 1989 to 2012.” Journal of Mountain Science 12: 14. doi:10.1007/s11629-015-3445-6.
  • Jiao, W., Y. N. Chen, and Z. Li. 2017. “Remote Sensing Estimation and the Reasons for Temporal-Spatial Differences of Vegetation Net Primary Productivity in the Arid Region of Northwest China.” Chinese Journal of Ecology 36 (1): 181–189.
  • Kogan, F. N. 1995. “Drought of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Date.” Bulletin of the American Meteorological Society 78 (4): 655–668. doi:10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2.
  • Lawal, S., B. Hewitson, T. S. Egbebiyi, and A. Adesuyi. 2021. “On the Suitability of Using Vegetation Indices to Monitor the Response of Africa’s Terrestrial Ecoregions to Drought.” The Science of the Total Environment 792: 148282. doi:10.1016/j.scitotenv.2021.148282.
  • Lian, X., L. Jiao, Z. Liu, Q. Jia, J. Zhong, M. Fang, and W. Wang. 2022. “Multi-Spatiotemporal Heterogeneous Legacy Effects of Climate on Terrestrial Vegetation Dynamics in China.” GIScience & Remote Sensing 59 (1): 164–183. doi:10.1080/15481603.2021.2022426.
  • Li, C. H., H. J. Cao, Y. P. Fan, H. Y. Han, H. Sun, and Y. T. Wang. 2019. “Remote Sensing Estimation and Analysis of Net Primary Productivity (NPP) Based on Corrected CASA Model: A Case Study of Hexi Corridor.” Acta Ecologica Sinica 39 (5): 1616–1626.
  • Liu, Y., C. Dang, H. Yue, C. Lyu, and X. Dang. 2021. “Enhanced Drought Detection and Monitoring Using Sun-Induced Chlorophyll Fluorescence Over Hulun Buir Grassland, China.” The Science of the Total Environment 770: 145271. doi:10.1016/j.scitotenv.2021.145271.
  • Liu, L., X. Yang, H. Zhou, Liu, S., Zhou, L., Li, X., Wu, J., et al. 2018. “Evaluating the Utility of Solar-Induced Chlorophyll Fluorescence for Drought Monitoring by Comparison with NDVI Derived from Wheat Canopy.” The Science of the Total Environment 625: 1208–1217. doi:10.1016/j.scitotenv.2017.12.268.
  • Liu, F., and Y. N. Zeng. 2021. “Analysis of the Spatio-Temporal Variation of Vegetation Carbon Source/Sink in Qinghai Plateau from 2000-2015.” Acta Ecologica Sinica 14: 5792–5803.
  • Liu, Z., X. Zhang, and R. Fang. 2018. “Multi-Scale Linkages of Winter Drought Variability to ENSO and the Arctic Oscillation: A Case Study in Shaanxi, North China.” Atmospheric Research 200: 117–125. doi:10.1016/j.atmosres.2017.10.012.
  • Liu, C., X. Zhang, T. Wang, G. Chen, K. Zhu, Q. Wang, and J. Wang. 2022. “Detection of Vegetation Coverage Changes in the Yellow River Basin from 2003 to 2020.” Ecological Indicators 138: 108818. doi:10.1016/j.ecolind.2022.108818.
  • Li, X., and J. Xiao. 2019. “A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data.” Remote Sensing 11 (5): 517. doi:10.3390/rs11050517.
  • Li, X., and J. Xiao. 2020. “Global Climatic Controls on Interannual Variability of Ecosystem Productivity: Similarities and Differences Inferred from Solar-Induced Chlorophyll Fluorescence and Enhanced Vegetation Index.” Agricultural and Forest Meteorology 288: 108018. doi:10.1016/j.agrformet.2020.108018.
  • Li, X., J. Xiao, and B. He. 2018. “Higher Absorbed Solar Radiation Partly Offset the Negative Effects of Water Stress on the Photosynthesis of Amazon Forests During the 2015 Drought.” Environmental Research Letters 13 (4): 044005. doi:10.1088/1748-9326/aab0b1.
  • Li, X., J. Xiao, B. He, M. Altaf Arain, J. Beringer, A. R. Desai, C. Emmel, et al. 2018. “Solar-Induced Chlorophyll Fluorescence is Strongly Correlated with Terrestrial Photosynthesis for a Wide Variety of Biomes: First Global Analysis Based on OCO-2 and Flux Tower Observations.” Global Change Biology 24 (9): 3990–4008. doi:10.1111/gcb.14297.
  • Lu, H., Z. Qin, S. Lin, X. Chen, B. Chen, B. He, J. Wei, and W. Yuan. 2022. “Large Influence of Atmospheric Vapor Pressure Deficit on Ecosystem Production Efficiency.” Nature Communications 13: 1653. doi:10.1038/s41467-022-29009-w.
  • Pan, J. H., and Z. Li. 2015. “Temporal-Spatial Change of Vegetation Net Primary Productivity in the Arid Region of Northwest China During 2001 and 2012.” Chinese Journal of Ecology 12: 3333–3340.
  • Pan, S., H. Tian, C. Lu, S. R. Dangal, and M. Liu. 2015. “Net Primary Production of Major Plant Functional Types in China: Vegetation Classification and Ecosystem Simulation.” Acta Ecologica Sinica 35 (2): 28–36. doi:10.1016/j.chnaes.2015.03.001.
  • Pan, J. H., and Y. Wen. 2015. “Estimation and Spatial-Temporal Characteristics of Carbon Sinks in the Arid Region of Northwest China.” Acta Ecologica Sinica 35 (23): 7718–7728. doi:10.5846/stxb201405211045.
  • Pei, Z. Y., C. P. Zhou, H. Ouyang, and W. B. Yang. 2010. “A Carbon Budget of Alpine Steppe Area in the Tibetan Plateau.” Geographical Research 29: 102–110.
  • Piao, S. L., X. P. Zhang, A. P. Chen, Q. Liu, X. Lian, X. H. Wang, and X. C. Wu. 2019. “Effects of Extreme Climate Events on Carbon Cycling in Terrestrial Ecosystems.” Scientia Sinica (Terrae) 9: 1321–1334.
  • Potter, C., S. Klooster, and V. Genovese. 2012. “Net Primary Production of Terrestrial Ecosystems from 2000 to 2009.” Climatic Change 115: 365–378. doi:10.1007/s10584-012-0460-2.
  • Salvucci, M. E., and S. J. Crafts-Brandner. 2004. “Inhibition of Photosynthesis by Heat Stress: The Activation State of Rubisco as a Limiting Factor in Photosynthesis.” Physiologia plantarum 120: 179–186. doi:10.1111/j.0031-9317.2004.0173.x.
  • Seidl, R., G. Klonner, W. Rammer, F. Essl, A. Moreno, M. Neumann, and S. Dullinger. 2018. “Invasive Alien Pests Threaten the Carbon Stored in Europe’s Forests.” Nature Communication 9: 1626. doi:10.1038/s41467-018-04096-w.
  • Shi, Z. H. 2015. Spatio-Temporal Simulation of Vegetation Carbon Sinks and Its Influencing Factors Based on CASA and GSMSR Models in Shaanxi Province. Northwest A&F University.
  • Song, L., L. Guanter, K. Guan, L. You, A. Huete, W. Ju, and Y. Zhang. 2018. “Satellite Sun-Induced Chlorophyll Fluorescence Detects Early Response of Winter Wheat to Heat Stress in the Indian Indo-Gangetic Plains.” Global Change Biology 24: 4023–4037. doi:10.1111/gcb.14302.
  • Torrence, C., and G. P. Compo. 1998. “A Practical Guide to Wavelet Analysis.” Bulletin of the American Meteorological Society 79 (1): 61–78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
  • Twine, T. E., and C. J. Kucharik. 2009. “Climate Impacts on Net Primary Productivity Trends in Natural and Managed Ecosystems of the Central and Eastern United States.” Agricultural and Forest Meteorology 149: 2143–2161. doi:10.1016/j.agrformet.2009.05.012.
  • Wang, C., Y. C. Liu, and Z. Li. 2021. “Effects of Ecological Water Conveyance on the Spatial Pattern of Vegetation Carbon Sources/Sinks in the Lower Reaches of Tarim River.” Arid Land Geography 3: 729–738.
  • Wang, T., X. Xue, L. Zhou, and J. Guo. 2015. “Combating Aeolian Desertification in Northern China.” Land Degradation & Development 26 (2): 118–132. doi:10.1002/ldr.2190.
  • Wang, S., Y. Zhang, W. Ju, J. M. Chen, P. Ciais, A. Cescatti, Janssens, I. A., et al. 2020. “Recent Global Decline of CO2 Fertilization Effects on Vegetation Photosynthesis.” Science 370 (6522): 1295–1300. doi:10.1126/science.abb7772.
  • Wang, C., W. Zhao, and Y. Zhang. 2022. “The Change in Net Ecosystem Productivity and Its Driving Mechanism in a Mountain Ecosystem of Arid Regions, Northwest China.” Remote Sensing 14 (16): 4046. doi:10.3390/rs14164046.
  • Wan, W., Z. Liu, J. Li, J. Xu, H. Wu, and Z. Xu. 2022. “Spatiotemporal Patterns of Maize Drought Stress and Their Effects on Biomass in the Northeast and North China Plain During 2000-2019.” Agricultural and Forest Meteorology 315: 108821. doi:10.1016/j.agrformet.2022.108821.
  • Wei, X., J. Yang, P. Luo, L. Lin, K. Lin, and J. Guan. 2022. “Assessment of the Variation and Influencing Factors of Vegetation NPP and Carbon Sinks Capacity Under Different Natural Conditions.” Ecological Indicators 138: 108834. doi:10.1016/j.ecolind.2022.108834.
  • Wu, M. Y. 2021. Responses of Ecosystem Carbon Cycle to Drought in Southwest China. Xi’an University of Science and Technology. doi:10.27397/d.cnki.gxaku.2021.000951.
  • Xia, A. Q., Y. F. Wang, Y. B. Hao, R. H. Hu, F. Wang, W. C. Wu, and X. Y. Cui. 2020. “Research Progress on Estimation of Vegetation Carbon Storage of Grasslands on Complex Terrain by Remote Sensing Technology.” Acta Ecologica Sinica 40 (18): 6338–6350.
  • Xu, H. J., X. P. Wang, and T. B. Yang. 2017. “Trend Shifts in Satellite-Derived Vegetation Growth in Central Eurasia, 1982–2013.” The Science of the Total Environment 579: 1658–1674. doi:10.1016/j.scitotenv.2016.11.182.
  • Xu, H. J., X. P. Wang, and C. Y. Zhao. 2021. “Drought Sensitivity of Vegetation Photosynthesis Along the Aridity Gradient in Northern China.” International Journal of Applied Earth Observation and Geoinformation 102: 102418. doi:10.1016/j.jag.2021.102418.
  • Xu, H. J., X. P. Wang, C. Y. Zhao, and X. M. Yang. 2018. “Diverse Responses of Vegetation Growth to Meteorological Drought Across Climatic Zones and Land Biomes in Northern China from 1981 to 2014.” Agricultural and Forest Meteorology 262: 1–13. doi:10.1016/j.agrformet.2018.06.027.
  • Xu, H. J., X. P. Wang, C. Y. Zhao, and X. M. Yang. 2021. “Assessing the Response of Vegetation Photosynthesis to Meteorological Drought Across Northern China.” Land Degradation & Development 32 (1): 20–34. doi:10.1002/ldr.3701.
  • Yang, H., and W. Chen. 2022. “Spatio-Temporal Pattern of Urban Vegetation Carbon Sinks and Driving Mechanisms of Human Activities in Huaibei, China.” Environmental Science and Pollution Research 29 (21): 31957–31971. doi:10.1007/s11356-022-18512-8.
  • Yoshida, Y., J. Joiner, C. Tucker, Berry, J., Lee, J. E., Walker, G., Wang, Y., et al. 2015. “The 2010 Russian Drought Impact on Satellite Measurements of Solar -Induced Chlorophyll Fluorescence: Insights from Modeling and Comparisons with Parameters Derived from Satellite Reflectances.” Remote Sensing of Environment 166: 163–177. doi:10.1016/j.rse.2015.06.008.
  • Yuan, J., Z. Bian, Q. Yan, Z. Gu, and H. Yu. 2020. “An Approach to the Temporal and Spatial Characteristics of Vegetation in the Growing Season in Western China.” Remote Sensing 12 (6): 945. doi:10.3390/rs12060945.
  • Zeppel, M. J. B., J. V. Wilks, and J. D. Lewis. 2014. “Impacts of Extreme Precipitation and Seasonal Changes in Precipitation on Plants.” Biogeosciences 11: 3083–3093. doi:10.5194/bg-11-3083-2014.
  • Zhang, Y., L. Guanter, J. A. Berry, C. van der Tol, X. Yang, J. Tang, and F. Zhang. 2016. “Model-Based Analysis of the Relationship Between Sun-Induced Chlorophyll Fluorescence and Gross Primary Production for Remote Sensing Applications.” Remote Sensing of Environment 187: 145–155. doi:10.1016/j.rse.2016.10.016.
  • Zhang, L., W. Jiao, H. Zhang, Huang, C., and Tong, Q. 2017. “Studying Drought Phenomena in the Continental United States in 2011 and 2012 Using Various Drought Indices.” Remote Sensing of Environment 190: 96–106. doi:10.1016/j.rse.2016.12.010.
  • Zhang, L. Y., X. Li, J. H. Feng, G. L. Rao, T. Y. He, and Y. Chen. 2021. “Spatial-Temporal Changes of NDVI in Yellow River Basin and Its Dual Response to Climate Change and Human Activities During 2000-2018.” Bulletin of Soil and Water Conservation 41 (05): 276–286.
  • Zhang, Z. Y., S. H. Wang, B. Qiu, L. Song, and Y. G. Zhang. 2019. “Retrieval of Sun-Induced Chlorophyll Fluorescence and Advancements in Carbon Cycle Application.” Journal of Remote Sensing 23 (1): 37–52.
  • Zhang, Z., W. Xu, Q. Qin, and Y. Chen. 2020. “Monitoring and Assessment of Agricultural Drought Based on Solar-Induced Chlorophyll Fluorescence During the Growing Season in North China Plain.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14: 775–790. doi:10.1109/JSTARS.2020.3032414.
  • Zhang, Z., W. Xu, Q. Qin, and Z. Long. 2020. “Downscaling Solar-Induced Chlorophyll Fluorescence Based on Convolutional Neural Network Method to Monitor Agricultural Drought.” IEEE Transactions on Geoscience and Remote Sensing 59 (2): 1012–1028. doi:10.1109/TGRS.2020.2999371.
  • Zhang, L., H. Yan, Y. He, S. Yao, S. Cao, and Q. Sun. 2022. “Spatiotemporal Prediction of Alpine Vegetation Dynamic Change Based on a ConvGru Neural Network Model: A Case Study of the Upper Heihe River Basin in Northwest China.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15: 6957–6971. doi:10.1109/JSTARS.2022.3200521.
  • Zhang, L., H. Yan, L. Qiu, S. Cao, Y. He, and G. Pang. 2021. “Spatial and Temporal Analyses of Vegetation Changes at Multiple Time Scales in the Qilian Mountains.” Remote Sensing 13 (24): 5046. doi:10.3390/rs13245046.
  • Zhang, M., N. Yuan, H. Lin, Y. Liu, and H. Zhang. 2022. “Quantitative Estimation of the Factors Impacting Spatiotemporal Variation in NPP in the Dongting Lake Wetlands Using Landsat Time Series Data for the Last Two Decades.” Ecological Indicators 135: 108544. doi:10.1016/j.ecolind.2022.108544.
  • Zhou, Z., S. Liu, Y. Ding, Q. Fu, Y. Wang, H. Cai, and H. Shi. 2022. “Assessing the Responses of Vegetation to Meteorological Drought and Its Influencing Factors with Partial Wavelet Coherence Analysis.” Journal of Environmental Management 311: 114879. doi:10.1016/j.jenvman.2022.114879.
  • Zhu, W. Q., Y. Z. Pan, Z. H. Long, Y. H. Chen, J. Li, and H. B. Hu. 2005. “NPP Estimation of Regional Terrestrial Vegetation Based on GIS and RS: A Case Study of Inner Mongolia, China.” Journal of Remote Sensing 9 (3): 300–307.
  • Zhu, W. Q., Y. Z. Pan, and J. S. Zhang. 2007. “Estimation of Net Primary Productivity of Chinese Terrestrial Vegetation Based on Remote Sensing.” Chinese Journal of Plant Ecology 31 (3): 413–424. doi:10.17521/cjpe.2007.0050.