694
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Generalized models for subtropical forest inventory attribute estimations using a rule-based exhaustive combination approach with airborne LiDAR-derived metrics

ORCID Icon, , , &
Article: 2194601 | Received 31 Oct 2022, Accepted 20 Mar 2023, Published online: 11 Apr 2023

References

  • Asner, G. P., J. K. Clark, J. Mascaro, G. A. Galindo García, K. D. Chadwick, D. A. Navarrete Encinales, G. Paez-Acosta, et al. 2012. “High-Resolution Mapping of Forest Carbon Stocks in the Colombian Amazon.” Biogeosciences Discussions 9 (7): 2445–27. doi:10.5194/bg-9-2683-2012.
  • Asner, G. P., J. Mascaro, H. C. Muller-Landau, G. Vieilledent, R. Vaudry, M. Rasamoelina, J. S. Hall, and M. van Breugel. 2012. “A Universal Airborne LiDar Approach for Tropical Forest Carbon Mapping.” Oecologia 168 (4): 1147–1160. doi:10.1007/s00442-011-2165-z.
  • Bouvier, M., S. Durrieu, R. A. Fournier, and J. -P. Renaud. 2015. “Generalizing Predictive Models of Forest Inventory Attributes Using an Area-Based Approach with Airborne LiDar Data.” Remote Sensing of Environment 156: 322–334. doi:10.1016/j.rse.2014.10.004.
  • Cao, L., H. Liu, X. Fu, Z. Zhang, Z. Shen, and H. Ruan. 2019. “Comparison of UAV LiDar and Digital Aerial Photogrammetry Point Clouds for Estimating Forest Structural Attributes in Subtropical Planted Forests.” Forests 10 (2): 145. doi:10.3390/f10020145.
  • Coomes, D. A., M. Dalponte, T. Jucker, G. P. Asner, L. F. Banin, D. F. R. P. Burslem, S. L. Lewis, et al. 2017. “Area-Based Vs Tree-Centric Approaches to Mapping Forest Carbon in Southeast Asian Forests from Airborne Laser Scanning Data.” Remote Sensing of Environment 194: 77–88. doi:10.1016/j.rse.2017.03.017.
  • Coops, N. C., P. Tompalski, T. R. H. Goodbody, M. Queinnec, J. E. Luther, D. K. Bolton, J. C. White, M. A. Wulder, O. R. van Lier, and T. Hermosilla. 2021. “Modelling Lidar-Derived Estimates of Forest Attributes Over Space and Time: A Review of Approaches and Future Trends.” Remote Sensing of Environment 260: 112477. doi:10.1016/j.rse.2021.112477.
  • Dalponte, M., C. Martinez, M. Rodeghiero, and D. Gianelle. 2011. “The Role of Ground Reference Data Collection in the Prediction of Stem Volume with LiDar Data in Mountain Areas.” Isprs Journal of Photogrammetry and Remote Sensing 66: 787–797. doi:10.1016/j.isprsjprs.2011.09.003.
  • da Silva, V. S., C. A. S. Ilva, M. Mohan, A. Cardil, F. E. Rex, G. H. Loureiro, D. R. A. de Almeida, et al. 2020. “Combined Impact of Sample Size and Modeling Approaches for Predicting Stem Volume in Eucalyptus Spp. Forest Plantations Using Field and LiDar Data.” Remote Sensing 12 (9): 1438. doi:10.3390/rs12091438.
  • Detto, M., G. P. Asner, H. C. Muller-Landau, and O. Sonnentag. 2015. “Spatial Variability in Tropical Forest Leaf Area Density from Multireturn Lidar and Modeling.” Journal of Geophysical Research-Biogeoscience 120 (2): 294–309. doi:10.1002/2014JG002774.
  • Ene, L. T., E. Næsset, T. Gobakken, T. G. Gregoire, G. Ståhl, and R. Nelson. 2012. “Assessing the Accuracy of Regional LiDar-Based Biomass Estimation Using a Simulation Approach.” Remote Sensing of Environment 123: 579–592. doi:10.1016/j.rse.2012.04.017.
  • Fekety, P. A., M. J. Falkowski, and A. Hudak. 2015. “Temporal Transferability of LiDar-Based Imputation of Forest Inventory Attributes.” Canadian Journal of Forest Research 45: 422–435. doi:10.1139/cjfr-2014-0405.
  • Gajardo, J., M. García, and D. Riaño. 2014. “Chapter 22 Applications of Airborne Laser Scanning in Forest Fuel Assessment and Fire Prevention.” In Forestry Applications of Airborne Laser Scanning: Concepts and Case Studies, Managing Forest Ecosystems, edited by M. Maltamo, E. Næsset, and J. Vauhkonen, Vol. 27, 439–462. © Springer ScienceCBusiness Media Dordrecht. doi:10.1007/978-94-017-8663-81.
  • Gao, Y., D. Lu, G. Li, G. Wang, Q. Chen, L. Liu, and D. Li. 2018. “Comparative Analysis of Modeling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region.” Remote Sensing 10 (4): 627. doi:10.3390/rs10040627.
  • García-Gutiérrez, J., E. Gonzalez-Ferreiro, J. C. Riquelme-Santos, D. Miranda, U. Dieguez-Aranda, and R. M. Navarro-Cerrillo. 2014. “Evolutionary Feature Selection to Estimate Forest Stand Variables Using LiDar.” International Journal of Applied Earth Observation and Geoinformation 26: 119–131. doi:10.1016/j.jag.2013.06.005.
  • García-Gutiérrez, J., F. Martínez-Álvarez, A. Troncoso, and J. C. Riquelme. 2015. “A Comparison of Machine Learning Regression Techniques for LiDar-Derived Estimation of Forest Variables.” Neurocomputing 167: 24–31. doi:10.1016/j.neucom.2014.09.091.
  • Getzin, S., R. Fischer, N. Knapp, and A. Huth. 2017. “Using Airborne LiDar to Assess Spatial Heterogeneity in Forest Structure on Mount Kilimanjaro.” Landscape Ecology 32: 1881–1894. doi:10.1007/s10980-017-0550-7.
  • Giannico, V., R. Lafortezza, R. John, G. Sanesi, L. Pesola, and J. Chen. 2016. “Estimating Stand Volume and Above-Ground Biomass of Urban Forests Using LiDar.” Remote Sensing 8: 339. doi:10.3390/rs8040339.
  • Gleason, C. J., and J. Im. 2012. “Forest Biomass Estimation from Airborne LiDar Data Using Machine Learning Approaches.” Remote Sensing of Environment 125: 80–91. doi:10.1016/j.rse.2012.07.006.
  • Gobakken, T., and E. Næsset. 2008. “Assessing Effects of Laser Point Density, Ground Sampling Intensity, and Field Sample Plot Size on Biophysical Stand Properties Derived from Airborne Laser Scanner Data.” Canadian Journal of Forest Research 38: 1095–1109. doi:10.1139/X07-219.
  • Görgens, E. B., P. Packalen, A. G. P. da Silva, C. A. Alvares, O. C. Campoe, J. L. Stape, and L. C. E. Rodriguez. 2015. “Stand Volume Models Based on Stable Metrics as from Multiple ALS Acquisitions in Eucalyptus Plantations.” Annals of Forest Science 72 (4): 489–498. doi:10.1007/s13595-015-0457-x.
  • Hamedianfar, A., C. Mohamedou, A. Kangas, and J. Vauhkonen. 2022. “Deep Learning for Forest Inventory and Planning: A critical Review on the Remote Sensing Approaches so Far and Prospects for Further Applications.” Forestry 95 (4): 451–465. doi:10.1093/forestry/cpac002.
  • Hauglin, M., J. Rahlf, J. Schumacher, R. Astrup, and J. Breidenbach. 2021. “Large Scale Mapping of Forest Attributes Using Heterogeneous Sets of Airborne Laser Scanning and National Forest Inventory Data.” Forest Ecosystems 8: 65. doi:10.1186/s40663-021-00338-4.
  • Hawkins, D. M. 2004. “The Problem of Overfitting.” Journal of Chemical Information and Computer Sciences 44: 1–12. doi:10.1021/ci0342472.
  • Hill, A., H. Buddenbaum, and D. Mandallaz. 2018. “Combining Canopy Height and Tree Species Map Information for Large‑scale Timber Volume Estimations Under Strong Heterogeneity of Auxiliary Data and Variable Sample Plot Sizes.” European Journal of Forest Research 137 (4): 489–505. doi:10.1007/s10342-018-1118-z.
  • Hollaus, M., W. Wagner, K. Schadauer, B. Maier, and K. Gabler. 2009. “Growing Stock Estimation for Alpine Forests in Austria: A Robust Lidar-Based Approach.” Canadian Journal of Forest Research 39: 1387–1400. doi:10.1139/X09-042.
  • Hopkinson, C., J. Lovell, L. Chasmer, D. Jupp, N. Kljun, and E. van Gorsel. 2013. “Integrating Terrestrial and Airborne Lidar to Calibrate a 3D Canopy Model of Effective Leaf Area Index.” Remote Sensing of Environment 136: 301–314. doi:10.1016/j.rse.2013.05.012.
  • Huang, Z., Z. Huang, C. Zeng, and Z. Huang. 1993. “The Annual Growth Rhythms of Tongmain Pine, a Geographic Seed Source of Pinus Massoniana.” Journal of Central-South Forestry College 13 (1): 98–102. in Chinese. doi:10.14067/j.cnki.1673-923x.1993.01.02.
  • Huang, W., B. Zhou, J. Zhao, and C. Wang. 1996. “Study on Annual Growth Rhythm of Fir Stands with Different Silvicultural Density and Its Relationship with Meteorological Factors.” Forestry Science and Technology of Henan Province 2: 4–11. in Chinese.
  • Hudak, A. T., N. L. Crookston, J. S. Evans, D. E. Hall, and M. J. Falkowski. 2008. “Nearest Neighbour Imputation of Species-Level, Plot-Scale Forest Structure Attributes from LiDar Data.” Remote Sensing of Environment 112 (5): 2232–2245. doi:10.1016/j.rse.2007.10.009.
  • Hu, R., G. Yan, F. Nerry, Y. Liu, Y. Jiang, S. Wang, Y. Chen, X. Mu, W. Zhang, and D. Xie. 2018. “Using Airborne Laser Scanner and Path Length Distribution Model to Quantify Clumping Effect and Estimate Leaf Area Index.” IEEE Transactions on Geoscience and Remote Sensing 56 (6): 3196–3209. doi:10.1109/TGRS.2018.2794504.
  • Kim, E., W. -K. Lee, M. Yoon, J. -Y. Lee, Y. Son, and K. A. Salim. 2016. “Estimation of Voxel-Based Above-Ground Biomass Using Airborne LiDar Data in an Intact Tropical Rain Forest, Brunei.” Forests 7: 259. doi:10.3390/f7110259.
  • Knapp, N., R. Fischer, V. Cazcarra-Bes, and A. Huth. 2020. “Structure Metrics to Generalize Biomass Estimation from Lidar Across Forest types from Different Continents.” Remote Sensing of Environment 237: 111597. doi:10.1016/j.rse.2019.111597.
  • Latifi, H., E. Fabian, F. E. Fassnacht, J. Müller, A. Tharani, S. Dech, and M. Heurich. 2015. “Forest Inventories by LiDar Data: A Comparison of Single Tree Segmentation and Metric-Based Methods for Inventories of a Heterogeneous Temperate Forest.” International Journal of Applied Earth Observation and Geoinformation 42: 162–174. doi:10.1016/j.jag.2015.06.008.
  • Lefsky, M. A., W. B. Cohen, and T. A. Spies. 2001. “An Evaluation of Alternate Remote Sensing Products for Forest Inventory, Monitoring, and Mapping of Douglas-Fir Forests in Western Oregon.” Canadian Journal of Forest Research 31 (1): 78–87. doi:10.1139/x00-142.
  • Liao, Z., and D. Huang. 1986. “Forest Inventory Handbook of Guangxi, China.” Pages 14-15. Forestry Department of Guangxi Zhuang Autonomous Region. Nanning, Guanxi, China. (in Chinese): Nanning.
  • Li, C., and Z. Li. 2021. “Generalizing Predictive Models of Sub-Tropical Forest Inventory Attributes Using an Area-Based Approach with Airborne LiDar Data.” Scientia Silvae Sinicae 57: 23–35. In Chinese. doi:10.11707/j.1001-7488.20211003.
  • Liu, H., X. Shen, L. Cao, T. Yun, Z. Zhang, X. Fu, X. Chen, and F. Liu. 2021. “Deep Learning in Forest Structural Parameter Estimation Using Airborne LiDar Data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14. doi:10.1109/JSTARS.2020.3046053.
  • Li, C., Z. Yu, X. Zhou, M. Zhou, and Z. Li. 2022. “Using the Error-In-Variable Simultaneous Equations Approach to Construct Compatible Estimation Models of Forest Inventory Attributes Based on Airborne LiDar.” Forests 14: 65. doi:10.3390/f14010065.
  • Lovell, J. L., D. L. Jupp, D. S. Culvenor, and N. C. Coops. 2003. “Using Airborne and Ground-Based Ranging Lidar to Measure Canopy Structure in Australian Forests.” Canadian Journal of Remote Sensing 29 (5): 607–622. doi:10.5589/m03-026.
  • Luo, S., J. M. Chen, C. Wang, A. Gonsamo, X. Xi, Y. Lin, M. Qian, et al. 2018. “Comparative Performances of Airborne LiDar Height and Intensity Data for Leaf Area Index Estimation.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11 (1): 300–310. doi:10.1109/JSTARS.2017.2765890.
  • Matasci, G., T. Hermosilla, M. A. Wulder, J. C. White, N. G. Coops, G. W. Hobart, and H. S. J. Zald. 2018. “Large-Area Mapping of Canadian Boreal Forest Cover, Height, Biomass and Other Structural Attributes Using Landsat Composites and Lidar Plots.” Remote Sensing of Environment 209: 90–106. doi:10.1016/j.rse.2017.12.020.
  • Means, J. E., S. A. Acker, B. J. Fitt, M. Renslow, L. Emerson, and C. J. Hendrix. 2000. “Predicting Forest Stand Characteristics with Airborne Scanning Lidar.” Photogrammetric Engineering and Remote Sensing 66 (11): 1367–1371.
  • Millie, D. F., G. R. Weckman, W. A. Young, J. E. Ivey, H. J. Carrick, and G. L. Fahnenstiel. 2012. “Modeling Microalgal Abundance with Artificial Neural Networks: Demonstration of a Heuristic ‘Grey-Box’ to Deconvolve and Quantify Environmentalinfluences.” Environmental Modelling & Software 38: 27–39. doi:10.1016/j.envsoft.2012.04.009.
  • Montealegre, A. L., M. T. Lamelas, J. de la Riva, A. García-Martín, and F. Escribano. 2016. “Use of Low Point Density ALS Data to Estimate Stand-Level Structural Metrics in Mediterranean Aleppo Pine Forest.” Forestry 89 (4): 373–382. doi:10.1093/forestry/cpw008.
  • Næsset, E. 2014. “Chapter 11 Area-Based Based Inventory Inventory in Norway–From from Innovation Innovation to an Operational Operational Realityreality.” In Forestry Applications of Airborne Laser Scanning: Concepts and Case Studies, Managing Forest Ecosystems, edited by M. Maltamo, E. Næsset, and J. Vauhkonen, Vol. 27, 215–240. © Springer ScienceCBusiness Media Dordrecht. doi:10.1007/978-94-017-8663-81.
  • Næsset, E., O. M. Bollandsas, T. Gobakken, and O. M. Bollandsá. 2005. “Comparing Regression Methods in Estimation of Biophysical Properties of Forest Stands from Two Different Inventories Using Laser Scanner Data.” Remote Sensing of Environment 94 (4): 541–553. doi:10.1016/j.rse.2004.11.010.
  • Næsset, E., T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman. 2004. “Laser Scanning of Forest Resources: The Nordic Experience.” Scandinavian Journal of Forest Research 19 (6): 482–499. doi:10.1080/02827580410019553.
  • Nilsson, M., K. Nordkvist, J. Jonzén, N. Lindgren, P. Axensten, J. Wallerman, M. Egberth, et al. 2017. “A Nationwide Forest Attribute Map of Sweden Predicted Using Airborne Laser Scanning Data and Field Data from the National Forest Inventory.” Remote Sensing of Environment 194: 447–454. doi:10.1016/j.rse.2016.10.022.
  • Nord-Larsen, T., and J. Schumacher. 2012. “Estimation of Forest Resources from a Country Wide Laser Scanning Survey and National Forest Inventory Data.” Remote Sensing of Environment 119: 148–157. doi:10.1016/j.rse.2011.12.022.
  • Novo-Fernández, A., M. Barrio-Anta, C. Recondo, A. Cámara-Obregón, and C. A. López-Sánchez. 2019. “Integration of National Forest Inventory and Nationwide Airborne Laser Scanning Data to Improve Forest Yield Predictions in North-Western Spain.” Remote Sensing 11: 1693. doi:10.3390/rs11141693.
  • Pearse, G. D., J. Morgenroth, M. S. Watt, and J. P. Dash. 2017. “Optimising Prediction of Forest Leaf Area Index from Discrete Airborne Lidar.” Remote Sensing of Environment 200: 220–239. doi:10.1016/j.rse.2017.08.002.
  • Penner, M., D. G. Pitt, and M. E. Woods. 2013. “Parametric Vs. Nonparametric LiDar Models for Operational Forest Inventory in Boreal Ontario.” Canadian Journal of Remote Sensing 39 (5): 426–443. doi:10.5589/m13-049.
  • Sheridan, R. D., S. C. Popescu, D. Gatziolis, C. L. S. Morgan, and N. -W. Ku. 2015. “Modeling Forest Aboveground Biomass and Volume Using Airborne LiDar Metrics and Forest Inventory and Analysis Data in the Pacific Northwest.” Remote Sensing 7 (1): 229–255. doi:10.3390/rs70100229.
  • Silva, C. A., A. T. Hudak, C. Klauberg, L. A. Vierling, C. Gonzalez‑benecke, S. de Padua Chaves Carvalho, L. C. E. Rodrihue, and A. Cardil. 2017. “Combined Effect of Pulse Density and Grid Cell Size on Predicting and Mapping Aboveground Carbon in Fast‑growing Eucalyptus Forest Plantation Using Airborne LiDar Data.” Carbon Balance and Management 12 (1): 13. doi:10.1186/s13021-017-0081-1.
  • Silva, C. A., C. Klauberg, A. T. Hubdak, L. A. Vierling, S. J. Fennema, and P. D. Corte. 2017. “Modeling and Mapping Basal Area of Pinus Taeda L. Plantation Using Airborne LiDar Data.” Anais da Academia Brasileira de Ciencias 89 (3): 1895–1905. doi:10.1590/0001-3765201720160324.
  • Singh, K. K., G. Chen, J. B. McCarter, and R. K. Meentemeyer. 2015. “Effects of LiDar Point Density and Landscape Context on Estimates of Urban Forest Biomass.” Isprs Journal of Photogrammetry and Remote Sensing 101: 310–322. doi:10.1016/j.isprsjprs.2014.12.021.
  • Treitz, P., K. Lim, M. Woods, D. Pitt, D. Nesbitt, and D. Etheridge. 2012. “LiDar Sampling Density for Forest Resource Inventories in Ontario, Canada.” Remote Sensing 4: 830–848. doi:10.3390/rs4040830.
  • van Ewijk, K., P. Treitz, M. Woods, T. Jones, and J. Caspersen. 2019. “Forest Site and Type Variability in ALS-Based Forest Resource Inventory Attribute Predictions Over Three Ontario Forest Sites.” Forests 10: 226. doi:10.3390/f10030226.
  • Vauhkonen, J., M. Maltamo, R. E. McRoberts, and E. Næsset. 2014. “Introduction to Forestry Applications of Airborne Laser Scanning.” In Forestry Applications of Airborne Laser Scanning: Concepts and Case Studies, Managing Forest Ecosystems, edited by M. Maltamo, E. Næsset, and J. Vauhkonen, 27. © Springer ScienceCBusiness Media Dordrecht. doi:10.1007/978-94-017-8663-81.
  • Watt, M. S., J. P. Dash, S. Bhandari, and P. Watt. 2015. “Comparing Parametric and Nonparametric Methods of Predicting Site Index for Radiata Pine Using Combinations of Data Derived from Environmental Surfaces, Satellite Imagery and Airborne Laser Scanning.” Forest Ecology and Management 357: 1–9. doi:10.1016/j.foreco.2015.08.001.
  • Watt, P., and M. S. Watt. 2013. “Development of a National Model of Pinus Radiate Stand Volume from Lidar Metrics for New Zealand.” International Journal of Remote Sensing 34 (15–16): 5892–5904. doi:10.1080/01431161.2013.798053.
  • White, J. C., P. Tompalski, M. Vastaranta, M. A. Wulder, N. Saarinen, C. Stepper, and N. C. Coops. 2017. A Model Development and Application Guide for Generating an Enhanced Forest Inventory Using Airborne Laser Scanning Data and an Area-Based Approach CWFC Information Report FI-X-018. Victoria, BC, Canada: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre. doi:10.13140/rg.2.2.26770.96964.
  • Woods, M., K. Lim, and P. Treitz. 2008. “Predicting Forest Stand Variables from LiDar Data in the Great Lakes – St. Lawrence Forest of Ontario.” Forestry Chronicle 84 (6): 827–839. doi:10.5558/tfc84827-6.
  • Xu, G., B. Manley, and J. Morgenroth. 2018. “Evaluation of Modelling Approaches in Predicting Forest Volume and Stand Age for Small-Scale Plantation Forests in New Zealand with RapidEye and LiDar.” International Journal of Applied Earth Observation and Geoinformation 73: 386–396. doi:10.1016/j.jag.2018.06.021.
  • Yu, Z., C. -G. Li, K. Su, X. -B. Zhou, and Z. -C. Chen. 2022. “Estimation of Forest Inventory Attributes Based on Stratification of Vertical Forest Structure Using Airborne Laser Scanning Data.” Journal of Guilin University of Technology (in Chinese). https://kns.cnki.net/kcms/detail/45.1375.n.20220429.1213.002.html.
  • Zaffalon, M. 2005. “Credible Classification for Environmental Problems.” Environmental Modelling and Software 20 (8): 1003–1012. doi:10.1016/j.envsoft.2004.10.006.
  • Zhang, Z., L. Cao, and G. She. 2017. “Estimating Forest Structural Parameters Using Canopy Metrics Derived from Airborne LiDar Data in Subtropical Forests.” Remote Sensing 9: 940. doi:10.3390/rs9090940.
  • Zhao, K., J. C. Suarez, M. Garcia, T. Hu, C. Wang, and A. Londo. 2017. “Utility of Multitemporal Lidar for Forest and Carbon Monitoring: Tree Growth, Biomass Dynamics, and Carbon Flux.” Remote Sensing of Environment 204: 883–897. doi:10.1016/j.rse.2017.09.007.
  • Zhou, X., C. Li, Z. Yu, Z. Chen, and K. Su. 2022. “Classification of Vertical Forest Structure of Overstory in Subtropical Forest Using Airborne Lidar Data.” Forest Resources Management 1: 106–113. in Chinese. doi:10.13466/j.cnki.lyzygl.2022.01.013.
  • Zolkos, S. G., S. J. Goetz, and R. Dubayah. 2013. “A Meta-Analysis of Terrestrial Aboveground Biomass Estimation Using Lidar Remote Sensing.” Remote Sensing of Environment 128: 128 289–298. doi:10.1016/j.rse.2012.10.017.