1,360
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Mapping stone walls in Northeastern USA using deep learning and LiDAR data

ORCID Icon &
Article: 2196117 | Received 19 Dec 2022, Accepted 23 Mar 2023, Published online: 06 Apr 2023

References

  • Abdollahi, A., B. Pradhan, N. Shukla, S. Chakraborty, and A. Alamri. 2020. “Deep Learning Approaches Applied to Remote Sensing Datasets for Road Extraction: A State-Of-The-Art Review.” Remote Sensing 12 (9): 1444. doi:10.3390/RS12091444.
  • Bennett, R., K. Welham, R. A. Hill, and A. Ford. 2012. “A Comparison of Visualization Techniques for Models Created from Airborne Laser Scanned Data.” Archaeological Prospection 19 (1): 41–25. doi:10.1002/arp.1414.
  • Blaschke, T., S. Lang, E. Lorup, J. Strobl, and P. Zeil. 2000. “Object-Oriented Image Processing in an Integrated GIS/Remote Sensing Environment and Perspectives for Environmental Applications. Environmental Information for Planning, Politics and the Public.” Environmental Information for Planning, Politics and the Public 2 (1995): 555–570.
  • Capitol Region Council of Governments (CRCoG). 2016a. “2016 Aerial Imagery.” http://Cteco.Uconn.Edu/Data/Flight2016/Index.Htm
  • Capitol Region Council of Governments (CRCoG). 2016b. “Connecticut Statewide LiDar 2016 Bare Earth DEM.” http://www.Cteco.Uconn.Edu/Metadata/Dep/Document/LidarDEM_2016_fgdc_plus.Htm
  • Carbonneau, P. E., S. J. Dugdale, T. P. Breckon, J. T. Dietrich, M. A. Fonstad, H. Miyamoto, and A. S. Woodget. 2020. “Adopting Deep Learning Methods for Airborne RGB Fluvial Scene Classification.” Remote Sensing of Environment 251 (September): 112107. Elsevier. doi:10.1016/j.rse.2020.112107.
  • Chen, Y., G. He, R. Yin, K. Zheng, and G. Wang. 2022. “Comparative Study of Marine Ranching Recognition in Multi-Temporal High-Resolution Remote Sensing Images Based on DeepLab-V3+ and U-Net.” Remote Sensing 14 (22): 5654. MDPI. doi:10.3390/rs14225654.
  • Chen, L. C., G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. 2018. “DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.” IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (4): 834–848. doi:10.1109/TPAMI.2017.2699184.
  • Chen, Y., Y. Wei, Q. Wang, F. Chen, C. Lu, and S. Lei. 2020. “Mapping Post-Earthquake Landslide Susceptibility: A U-Net Like Approach.” Remote Sensing 12 (17): 2767. doi:10.3390/RS12172767.
  • Chicco, D., and G. Jurman. 2020. “The Advantages of the Matthews Correlation Coefficient (MCC) Over F1 Score and Accuracy in Binary Classification Evaluation.” BMC Genomics 21 (1). BioMed Central. doi:10.1186/s12864-019-6413-7.
  • Connecticut Center for Land Use Education & Research (CT CLEAR). 2016. “2015 Connecticut Land Cover.” https://Clear.Uconn.Edu/Projects/Landscape/Download.Htm#top
  • Connecticut Center for Land Use Education & Research (CT CLEAR). 2017. “Statewide Impervious 2012.”
  • Connecticut Environmental Conditions Online (CT ECO). 2016. “Connecticut Statewide LiDAR 2016.”
  • Connecticut Environmental Conditions Online (CT ECO). 2019. ”Connecticut Orthoimagery 2019.”
  • Crow, P., S. Benham, B. J. Devereux, and G. S. Amable. 2007. “Woodland Vegetation and Its Implications for Archaeological Survey Using LiDar.” Forestry 80 (3): 241–252. doi:10.1093/forestry/cpm018.
  • Davis, D. S., C. P. Lipo, and M. C. Sanger. 2019. “A Comparison of Automated Object Extraction Methods for Mound and Shell-Ring Identification in Coastal South Carolina.” Journal of Archaeological Science: Reports 23 (November 2018): 166–177. Elsevier. doi:10.1016/j.jasrep.2018.10.035.
  • Diakogiannis, F. I., F. Waldner, P. Caccetta, and C. Wu. 2020. “ResUnet-A: A Deep Learning Framework for Semantic Segmentation of Remotely Sensed Data.” ISPRS Journal of Photogrammetry and Remote Sensing 162 (January): 94–114. Elsevier. doi:10.1016/j.isprsjprs.2020.01.013.
  • Doneus, M. 2013. “Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models.” Remote Sensing 5 (12): 6427–6442. doi:10.3390/rs5126427.
  • Doneus, M., C. Briese, M. Fera, and M. Janner. 2008. “Archaeological Prospection of Forested Areas Using Full-Waveform Airborne Laser Scanning.” Journal of Archaeological Science 35 (4): 882–893. doi:10.1016/j.jas.2007.06.013.
  • Evans, D. H., R. J. Fletcher, C. Pottier, J. B. Chevance, D. Soutif, B. S. Tan, S. Im, et al. 2013. “Uncovering Archaeological Landscapes at Angkor Using Lidar.” Proceedings of the National Academy of Sciences of the United States of America 110 (31): 12595–12600. doi:10.1073/pnas.1306539110.
  • Foster, D. R., B. Donahue, D. Kittredge, G. Motzkin, B. Hall, B. Turner, and E. Chilton. 2008. “New England's Forest Landscape: Ecological Legacies and Conservation Patterns Shaped by Agrarian History.“ In Agrarian Landscapes in Transition: Comparisons of Long-Term Ecological and Cultural Change, 44–88. Oxford University Press.
  • Freeland, T., B. Heung, D. V. Burley, G. Clark, and A. Knudby. 2016. “Automated Feature Extraction for Prospection and Analysis of Monumental Earthworks from Aerial LiDar in the Kingdom of Tonga.” Journal of Archaeological Science 69: 64–74. Elsevier. doi:10.1016/j.jas.2016.04.011.
  • Gallwey, J., M. Eyre, M. Tonkins, and J. Coggan. 2019. “Bringing Lunar LiDar Back Down to Earth: Mapping Our Industrial Heritage Through Deep Transfer Learning.” Remote Sensing 11 (17): 1994. doi:10.3390/rs11171994.
  • Girshick, R., J. Donahue, T. Darrell, and J. Malik. 2013. “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.” November. http://arxiv.org/abs/1311.2524
  • Guyot, A., M. Lennon, and L. Hubert-Moy. 2021. “Combined Detection and Segmentation of Archeological Structures from LiDar Data Using a Deep Learning Approach.” Journal of Computer Applications in Archaeology 4 (1): 1–19. doi:10.5334/jcaa.64.
  • He, K., G. Gkioxari, P. Dollár, and R. Girshick. 2020. “Mask R-CNN.” IEEE Transactions on Pattern Analysis and Machine Intelligence 42 (2): 386–397. doi:10.1109/TPAMI.2018.2844175.
  • Heidemann, H. 2018. Lidar Base Specification.
  • Hesse, R. 2010. “LiDAR-Derived Local Relief Models-A New Tool for Archaeological Prospection.” Archaeological Prospection 17 (2): 67–72. doi:10.1002/arp.374.
  • He, K., X. Zhang, S. Ren, and J. Sun. 2015. “Deep Residual Learning for Image Recognition.” In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. doi:10.1109/CVPR.2016.90.
  • Howey, M. C. L., F. B. Sullivan, J. Tallant, R. V. Kopple, and M. W. Palace. 2016. “Detecting Precontact Anthropogenic Microtopographic Features in a Forested Landscape with Lidar: A Case Study from the Upper Great Lakes Region, AD 1000-1600.” Plos One 11 (9): 1–11. doi:10.1371/journal.pone.0162062.
  • Ioffe, S., and C. Szegedy. 2015. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.” 32nd International Conference on Machine Learning, ICML 2015 1: 448–456.
  • Johnson, K., and W. Ouimet. 2014. “Rediscovering the Lost Archaeological Landscape of Southern New England Using Airborne Light Detection and Ranging (LiDar).” Journal of Archaeological Science 43 (1): 9–20. Elsevier. doi:10.1016/j.jas.2013.12.004.
  • Johnson, K., and W. Ouimet. 2016. “Physical Properties and Spatial Controls of Stone Walls in the Northeastern USA: Implications for Anthropocene Studies of 17th to Early 20th Century Agriculture.” Anthropocene 15: 22–36. Elsevier B.V. doi:10.1016/j.ancene.2016.07.001.
  • Johnson, K., and W. Ouimet. 2018. “An Observational and Theoretical Framework for Interpreting the Landscape Palimpsest Through Airborne LiDar.” Applied Geography 91 (January): 32–44. Elsevier. doi:10.1016/j.apgeog.2017.12.018.
  • Johnson, K., and W. Ouimet. 2021. “Reconstructing Historical Forest Cover and Land Use Dynamics in the Northeastern United States Using Geospatial Analysis and Airborne LiDar.” Annals of the American Association of Geographers 111 (6): 1656–1678. Taylor & Francis. doi:10.1080/24694452.2020.1856640.
  • Johnson, K., W. Ouimet, S. Dow, and C. Haverfield. 2021. “Estimating Historically Cleared and Deforested Land in Massachusetts Using Airborne LiDar.” Remote Sensing 13 (21): 4318. doi:10.3390/rs13214318.
  • Kim, M., J. Lee, D. Han, M. Shin, J. Im, J. Lee, L. J. Quackenbush, and Z. Gu. 2018. “Convolutional Neural Network-Based Land Cover Classification Using 2-D Spectral Reflectance Curve Graphs with Multitemporal Satellite Imagery.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11 (12): 4604–4617. IEEE. doi:10.1109/JSTARS.2018.2880783.
  • Kingma, D. P, and J. Ba. 2015. “Adam: A Method for Stochastic Optimization.“ ICLR.
  • Kokalj, Ž., and M. Somrak. 2019. “Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping.” Remote Sensing 11 (7): 747. doi:10.3390/rs11070747.
  • Kokalj, Ž., K. Zaksek, and K. Oštir. 2013. “Visualizations of Lidar Derived Relief Models.” In Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation, edited by R. S. Opitz and D. C. Cowley, 100–114. Oxford, England: Oxbow Books.
  • Kugelman, J., J. Allman, S. A. Read, S. J. Vincent, J. Tong, M. Kalloniatis, F. K. Chen, M. J. Collins, and D. Alonso-Caneiro. 2022. “A Comparison of Deep Learning U-Net Architectures for Posterior Segment OCT Retinal Layer Segmentation”. Scientific Reports 12(1). Nature Research. doi:10.1038/s41598-022-18646-2.
  • Kussul, N., M. Lavreniuk, S. Skakun, and A. Shelestov. 2017. “Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data.” IEEE Geoscience and Remote Sensing Letters 14 (5): 778–782. IEEE. doi:10.1109/LGRS.2017.2681128.
  • Leonard, J., W. B. Ouimet, and S. Dow. 2021. “Evaluating User Interpretation and Error Associated with Digitizing Stone Walls Using Airborne LiDar.” Geological Society of America Abstracts with Programs 53 (1). doi:10.1130/abs/2021NE-361715.
  • Li, W., R. Buitenwerf, M. Munk, P. K. Bøcher, and J. C. Svenning. 2020. “Deep-Learning Based High-Resolution Mapping Shows Woody Vegetation Densification in Greater Maasai Mara Ecosystem.” Remote Sensing of Environment 247 (November 2019): 111953. Elsevier. doi:10.1016/j.rse.2020.111953.
  • Liu, P., Y. Wei, Q. Wang, Y. Chen, and J. Xie. 2020. “Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model.” Remote Sensing 12 (5): 1–14. doi:10.3390/rs12050894.
  • Magnini, L., C. Bettineschi, and A. De Guio. 2017. “Object-Based Shell Craters Classification from LiDAR-Derived Sky-View Factor.” Archaeological Prospection 24 (3): 211–223. doi:10.1002/arp.1565.
  • Mboga, N., T. Grippa, S. Georganos, S. Vanhuysse, B. Smets, O. Dewitte, E. Wolff, and M. Lennert. 2020. “Fully Convolutional Networks for Land Cover Classification from Historical Panchromatic Aerial Photographs.” ISPRS Journal of Photogrammetry and Remote Sensing 167 (July): 385–395. Elsevier. doi:10.1016/j.isprsjprs.2020.07.005.
  • Niculiță, M. 2020. “Geomorphometric Methods for Burial Mound Recognition and Extraction from High-Resolution LiDar DEMs.” Sensors (Switzerland) 20 (4): 1192. doi:10.3390/s20041192.
  • Olteanu-Raimond, A. M., L. See, M. Schultz, G. Foody, M. Riffler, T. Gasber, L. Jolivet, et al. 2020. “Use of Automated Change Detection and VGI Sources for Identifying and Validating Urban Land Use Change.” Remote Sensing 12 (7): 1186. doi:10.3390/rs12071186.
  • Orengo, H. A., F. C. Conesa, A. Garcia-Molsosa, A. Lobo, A. S. Green, M. Madella, and C. A. Petrie. 2020. “Automated Detection of Archaeological Mounds Using Machine-Learning Classification of Multisensor and Multitemporal Satellite Data.” Proceedings of the National Academy of Sciences of the United States of America 117 (31): 18240–18250. doi:10.1073/pnas.2005583117.
  • Qi, W., M. Wei, W. Yang, C. Xu, and C. Ma. 2020. “Automatic Mapping of Landslides by the ResU-Net.” Remote Sensing 12 (15): 1–15. doi:10.3390/RS12152487.
  • Ren, S., K. He, R. Girshick, and J. Sun. 2017. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.” IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (6): 1137–1149. IEEE. doi:10.1109/TPAMI.2016.2577031.
  • Ridge, J. C. 2004. “The Quaternary glaciation of western New England with correlations to surrounding areas.“ Developments in Quaternary Sciences, 2: 169–199. doi:10.1016/S1571-0866(04)80196-9.
  • Risbøl, O., and L. Gustavsen. 2018. “LiDar from Drones Employed for Mapping Archaeology – Potential, Benefits and Challenges.” Archaeological Prospection 25 (4): 329–338. doi:10.1002/arp.1712.
  • Rodríguez, C. G., J. Vitrià, and O. Mora. 2020. “Uncertainty-Based Human-In-The-Loop Deep Learning for Land Cover Segmentation.” Remote Sensing 12 (22): 1–14. doi:10.3390/rs12223836.
  • Ronneberger, O., P. Fischer, and T. Brox. 2015. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” Medical Image Computing and Computer-Assisted Intervention 9351: 234–241. doi:10.1007/978-3-319-24574-4_28.
  • Schneider, A., M. Takla, A. Nicolay, A. Raab, and T. Raab. 2015. “A Template-Matching Approach Combining Morphometric Variables for Automated Mapping of Charcoal Kiln Sites.” Archaeological Prospection 22 (1): 45–62. doi:10.1002/arp.1497.
  • Srivastava, S., J. E. Vargas-Muñoz, and D. Tuia. 2019. “Understanding Urban Landuse from the Above and Ground Perspectives: A Deep Learning, Multimodal Solution.” Remote Sensing of Environment 228 (October 2018): 129–143. Elsevier. doi:10.1016/j.rse.2019.04.014.
  • Stoian, A., V. Poulain, J. Inglada, V. Poughon, and D. Derksen. 2019. “Land Cover Maps Production with High Resolution Satellite Image Time Series and Convolutional Neural Networks: Adaptations and Limits for Operational Systems.” Remote Sensing 11 (17): 1–26. doi:10.3390/rs11171986.
  • Štular, B., Ž. Kokalj, K. Oštir, and L. Nuninger. 2012. “Visualization of Lidar-Derived Relief Models for Detection of Archaeological Features.” Journal of Archaeological Science 39 (11): 3354–3360. doi:10.1016/j.jas.2012.05.029.
  • Suh, J. W., E. Anderson, W. Ouimet, K. Johnson, and C. Witharana. 2021. “Mapping Relict Charcoal Hearths in the Northeast US Using Deep Learning Convolutional Neural Networks and LIDAR Data.” Remote Sensing 13 (22): 4630. doi:10.3390/rs13224630.
  • Sylvain, J. D., G. Drolet, and N. Brown. 2019. “Mapping Dead Forest Cover Using a Deep Convolutional Neural Network and Digital Aerial Photography.” ISPRS Journal of Photogrammetry and Remote Sensing 156 (August): 14–26. Elsevier. doi:10.1016/j.isprsjprs.2019.07.010.
  • Tan, Y., S. Xiong, and Y. Li. 2018. “Automatic Extraction of Built-Up Areas from Panchromatic and Multispectral Remote Sensing Images Using Double-Stream Deep Convolutional Neural Networks.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11 (11): 3988–4004. IEEE. doi:10.1109/JSTARS.2018.2871046.
  • Thorson, R. M. 2002. Stone by Stone : The Magnificent History In New England’s Stone Walls. New York: Walker & Company.
  • Thorson, R. M. 2023. “Taxonomy and Nomenclature of the Stone Domain in New England.” Historical Archaeology.
  • Trier, Ø. D., J. H. Reksten, and K. Løseth. 2021. “Automated Mapping of Cultural Heritage in Norway from Airborne Lidar Data Using Faster R-CNN.” International Journal of Applied Earth Observation and Geoinformation 95: 102241. doi:10.1016/j.jag.2020.102241.
  • Trier, Ø. D., M. Zortea, and C. Tonning. 2015. “Automatic Detection of Mound Structures in Airborne Laser Scanning Data.” Journal of Archaeological Science: Reports 2 (February): 69–79. doi:10.1016/j.jasrep.2015.01.005.
  • Verbovšek, T., T. Popit, and Ž. Kokalj. 2019. “VAT Method for Visualization of Mass Movement Features: An Alternative to Hillshaded DEM.” Remote Sensing 11 (24): 1–14. doi:10.3390/rs11242946.
  • Verschoof van der Vaart, W., A. Bonhage, A. Schneider, W. Ouimet, and T. Raab. 2022. “Automated Large-Scale Mapping and Analysis of Relict Charcoal Hearths in Connecticut (USA) Using a Deep Learning YOLOv4 Framework.” Archaeological Prospection John Wiley and Sons. doi:10.1002/arp.1889.
  • Verschoof-van der Vaart, W., and K. Lambers. 2019. “Learning to Look at LiDar: The Use of R-CNN in the Automated Detection of Archaeological Objects in LiDar Data from the Netherlands.” Journal of Computer Applications in Archaeology 2 (1): 31–40. doi:10.5334/jcaa.32.
  • Verschoof-Van Der Vaart, W. B., K. Lambers, W. Kowalczyk, and Q. P. J. Bourgeois. 2020. “Combining Deep Learning and Location-Based Ranking for Large-Scale Archaeological Prospection of LiDar Data from the Netherlands.” ISPRS International Journal of Geo-Information 9 (5): 293. doi:10.3390/ijgi9050293.
  • Verschoof-van der Vaart, W., and J. Landauer. 2021. “Using CarcassonNet to Automatically Detect and Trace Hollow Roads in LiDar Data from the Netherlands.” Journal of Cultural Heritage 47 (January): 143–154. Elsevier Masson s.r.l. doi:10.1016/j.culher.2020.10.009.
  • Waldner, F., and F. I. Diakogiannis. 2020. “Deep Learning on Edge: Extracting Field Boundaries from Satellite Images with a Convolutional Neural Network.” Remote Sensing of Environment 245 (October 2019): 111741. Elsevier. doi:10.1016/j.rse.2020.111741.
  • Wang, Y., and M. Li. 2019. “Urban Impervious Surface Detection from Remote Sensing Images: A Review of the Methods and Challenges.” IEEE Geoscience and Remote Sensing Magazine 7 (3): 64–93. IEEE. doi:10.1109/MGRS.2019.2927260.
  • Wessels, T. 1997. Reading the Forested Landscape. New York: The Countryman Press.
  • Witharana, C., W. Ouimet, and K. Johnson. 2018. “Using LiDar and GEOBIA for Automated Extraction of Eighteenth–Late Nineteenth Century Relict Charcoal Hearths in Southern New England.” GIScience & Remote Sensing 55 (2): 183–204. Taylor & Francis. doi:10.1080/15481603.2018.1431356.
  • Wu, R., G. Liu, R. Zhang, X. Wang, Y. Li, and B. Zhang. 2020. “A Deep Learning Method for Mapping Glacial Lakes from the Combined Use of Synthetic-Aperture Radar and Optical Satellite Images.” Remote Sensing 12 (24): 4020. Dl. doi:10.3390/rs12244020.
  • Yan, S., L. Xu, G. Yu, L. Yang, W. Yun, D. Zhu, S. Ye, and X. Yao. 2021. “Glacier Classification from Sentinel-2 Imagery Using Spatial-Spectral Attention Convolutional Model.” International Journal of Applied Earth Observation and Geoinformation 102: 102445. Elsevier B.V. doi:10.1016/j.jag.2021.102445.
  • Zhang, C., P. Harrison, X. Pan, H. Li, I. Sargent, and P. Atkinson. 2020. “Scale Sequence Joint Deep Learning (SS-JDL) for Land Use and Land Cover Classification.” Remote Sensing of Environment 237 (September 2019): 111593. Elsevier. doi:10.1016/j.rse.2019.111593.
  • Zhang, Z., Q. Liu, and Y. Wang. 2018. “Road Extraction by Deep Residual U-Net.” IEEE Geoscience and Remote Sensing Letters 15 (5): 749–753. doi:10.1109/LGRS.2018.2802944.
  • Zhang, C., I. Sargent, X. Pan, H. Li, A. Gardiner, J. Hare, and P. M. Atkinson. 2018. “An Object-Based Convolutional Neural Network (OCNN) for Urban Land Use Classification.” Remote Sensing of Environment 216 (January): 57–70. Elsevier. doi:10.1016/j.rse.2018.06.034.
  • Zhong, L., L. Hu, and H. Zhou. 2019. “Deep Learning Based Multi-Temporal Crop Classification.” Remote Sensing of Environment 221 (November 2018): 430–443. Elsevier. doi:10.1016/j.rse.2018.11.032.
  • Zhou, Z., M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang. 2018. “Unet++: A Nested U-Net Architecture for Medical Image Segmentation.” Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11045 LNCS. Springer International Publishing. doi:10.1007/978-3-030-00889-5_1.