1,885
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Retrieval and validation of vertical LAI profile derived from airborne and spaceborne LiDAR data at a deciduous needleleaf forest site

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2214987 | Received 24 Oct 2022, Accepted 11 May 2023, Published online: 24 May 2023

References

  • Alonzo, M., B. Bookhagen, J. P. McFadden, A. Sun, and D. A. Roberts. 2015. “Mapping Urban Forest Leaf Area Index with Airborne Lidar Using Penetration Metrics and Allometry.” Remote Sensing of Environment 162: 141–29. doi:10.1016/j.rse.2015.02.025.
  • Alton, P. B. 2016. “The Sensitivity of Models of Gross Primary Productivity to Meteorological and Leaf Area Forcing: A Comparison Between a Penman-Monteith Ecophysiological Approach and the MODIS Light-Use Efficiency Algorithm.” Agricultural and Forest Meteorology 218: 11–24. doi:10.1016/j.agrformet.2015.11.010.
  • Armston, J., M. Disney, P. Lewis, P. Scarth, S. Phinn, R. Lucas, P. Bunting, and N. Goodwin. 2013. “Direct Retrieval of Canopy Gap Probability Using Airborne Waveform Lidar.” Remote Sensing of Environment 134: 24–38. doi:10.1016/j.rse.2013.02.021.
  • Arnqvist, J., J. Freier, and E. Dellwik. 2020. “Robust Processing of Airborne Laser Scans to Plant Area Density Profiles.” Biogeosciences 17: 5939–5952. doi:10.5194/bg-17-5939-2020.
  • Asner, G. P., B. H. Braswell, D. S. Schimel, and C. A. Wessman. 1998. “Ecological Research Needs from Multiangle Remote Sensing Data.” Remote Sensing of Environment 63: 155–165. doi:10.1016/S0034-4257(97)00139-9.
  • Baret, F., M. Weiss, R. Lacaze, F. Camacho, H. Makhmara, P. Pacholcyzk, and B. Smets. 2013. “GEOV1: LAI and FAPAR Essential Climate Variables and FCOVER Global Time Series Capitalizing Over Existing Products. Part1: Principles of Development and Production.” Remote Sensing of Environment 137: 299–309. doi:10.1016/j.rse.2012.12.027.
  • Béland, M., and D. D. Baldocchi. 2021. “Vertical Structure Heterogeneity in Broadleaf Forests: Effects on Light Interception and Canopy Photosynthesis.” Agricultural and Forest Meteorology 307: 108525. doi:10.1016/j.agrformet.2021.108525.
  • Beland, M., D. D. Baldocchi, J. L. Widlowski, R. A. Fournier, and M. M. Verstraete. 2014. “On Seeing the Wood from the Leaves and the Role of Voxel Size in Determining Leaf Area Distribution of Forests with Terrestrial LiDar.” Agricultural and Forest Meteorology 184: 82–97. doi:10.1016/j.agrformet.2013.09.005.
  • Beland, M., H. Kobayashi, and S. Goslee. 2021. “Mapping Forest Leaf Area Density from Multiview Terrestrial Lidar.” Methods in Ecology and Evolution 12 (4): 619–633. doi:10.1111/2041-210X.13550.
  • Beland, M., J. L. Widlowski, R. A. Fournier, J. F. Cote, and M. M. Verstraete. 2011. “Estimating Leaf Area Distribution in Savanna Trees from Terrestrial LiDar Measurements.” Agricultural and Forest Meteorology 151 (9): 1252–1266. doi:10.1016/j.agrformet.2011.05.004.
  • Bonan, G. B., S. Levis, L. Kergoat, and K. W. Oleson. 2002. “Landscapes as Patches of Plant Functional Types: An Integrating Concept for Climate and Ecosystem Models.” Global Biogeochemical Cycles 16 (2): 5–23. doi:10.1029/2000GB001360.
  • Boucher, P. B., S. Hancock, D. A. Orwig, L. Duncanson, J. Armston, H. Tang, K. Krause, et al. 2020. “Detecting Change in Forest Structure with Simulated GEDI Lidar Waveforms: A Case Study of the Hemlock Woolly Adelgid (HWA; Adelges Tsugae) Infestation.” Remote Sensing 12: 25. doi:10.3390/rs12081304.
  • Bouvier, M., S. Durrieu, R. A. Fournier, and J. -P. Renaud. 2015. “Generalizing Predictive Models of Forest Inventory Attributes Using an Area-Based Approach with Airborne LiDar Data.” Remote Sensing of Environment 156: 322–334. doi:10.1016/j.rse.2014.10.004.
  • Chen, J. M., and T. A. Black. 1992. “Defining Leaf Area Index for Non-Flat Leaves.” Plant, Cell & Environment 15: 421–429. doi:10.1111/j.1365-3040.1992.tb00992.x.
  • Chen, X. T., M. I. Disney, P. Lewis, J. Annston, J. T. Han, and J. C. Li. 2014. “Sensitivity of Direct Canopy Gap Fraction Retrieval from Airborne Waveform Lidar to Topography and Survey Characteristics.” Remote Sensing of Environment 143: 15–25. doi:10.1016/j.rse.2013.12.010.
  • Clark, D. B., P. C. Olivas, S. F. Oberbauer, D. A. Clark, and M. G. Ryan. 2008. “First Direct Landscape-Scale Measurement of Tropical Rain Forest Leaf Area Index, a Key Driver of Global Primary Productivity.” Ecology Letters 11: 163–172. doi:10.1111/j.1461-0248.2007.01134.x.
  • Dhargay, S., C. S. Lyell, T. P. Brown, A. Inbar, G. J. Sheridan, and P. N. J. Lane. 2022. “Performance of GEDI Space-Borne LiDar for Quantifying Structural Variation in the Temperate Forests of South-Eastern Australia.” Remote Sensing 14 (15): 3615. Remote Sensing, 14. doi:10.3390/rs14153615.
  • Dubayah, R., J. B. Blair, S. Goetz, L. Fatoyinbo, M. Hansen, S. Healey, M. Hofton, et al. 2020. “The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography.” Science of Remote Sensing 1: 100002. doi:10.1016/j.srs.2020.100002.
  • Dubayah, R., H. Tang, J. Armston, S. Luthcke, M. Hofton, and J. Blair. 2020. GEDI L2B Canopy Cover and Vertical Profile Metrics Data Global Footprint Level V001 [Data Set]. In: NASA EOSDIS Land Processes DAAC.
  • Dubayah, R., H. Tang, J. Armston, S. Luthcke, M. Hofton, and J. Blair. 2021. “GEDI L2B Canopy Cover and Vertical Profile Metrics Data Global Footprint Level V002.” PLos One 16 (8). doi:10.1371/journal.pone.0256571.
  • Fang, H. L., F. Baret, S. Plummer, and G. Schaepman-Strub. 2019. “An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications.” Reviews of Geophysics 57: 739–799. doi:10.1029/2018RG000608.
  • Fang, H. L., W. J. Li, S. S. Wei, and C. Y. Jiang. 2014. “Seasonal Variation of Leaf Area Index (LAI) Over Paddy Rice Fields in NE China: Intercomparison of Destructive Sampling, LAI-2200, Digital Hemispherical Photography (DHP), and AccuPar Methods.” Agricultural and Forest Meteorology 198: 126–141. doi:10.1016/j.agrformet.2014.08.005.
  • Fang, H. L., Y. H. Zhang, S. S. Wei, W. J. Li, Y. C. Ye, T. Sun, and W. W. Liu. 2019. “Validation of Global Moderate Resolution Leaf Area Index (LAI) Products Over Croplands in Northeastern China.” Remote Sensing of Environment 233: 19. doi:10.1016/j.rse.2019.111377.
  • García, M., D. Riaño, E. Chuvieco, and F. M. Danson. 2010. “Estimating Biomass Carbon Stocks for a Mediterranean Forest in Central Spain Using LiDar Height and Intensity Data.” Remote Sensing of Environment 114: 816–830. doi:10.1016/j.rse.2009.11.021.
  • Gastellu-Etchegorry, J. P., E. Martin, and F. Gascon. 2004. “DART: A 3D Model for Simulating Satellite Images and Studying Surface Radiation Budget.” International Journal of Remote Sensing 25: 73–96. doi:10.1080/0143116031000115166.
  • Gatziolis, D. 2011. “Dynamic Range-Based Intensity Normalization for Airborne, Discrete Return Lidar Data of Forest Canopies.” Photogrammetric Engineering & Remote Sensing 77: 251–259. doi:10.14358/PERS.77.3.251.
  • Goetz, S., D. Steinberg, R. Dubayah, and B. Blair. 2007. “Laser Remote Sensing of Canopy Habitat Heterogeneity as a Predictor of Bird Species Richness in an Eastern Temperate Forest, USA.” Remote Sensing of Environment 108: 254–263. doi:10.1016/j.rse.2006.11.016.
  • Guo, Q. H., Y. J. Su, T. Y. Hu, H. C. Guan, S. C. Jin, J. Zhang, X. X. Zhao, et al. 2021. “Lidar Boosts 3D Ecological Observations and Modelings: A Review and Perspective.” IEEE Geoscience and Remote Sensing Magazine 9: 232–257. doi:10.1109/MGRS.2020.3032713.
  • Hirata, R., T. Hirano, N. Saigusa, Y. Fujinuma, K. Inukai, Y. Kitamori, Y. Takahashi, and S. Yamamoto. 2007. “Seasonal and Interannual Variations in Carbon Dioxide Exchange of a Temperate Larch Forest.” Agricultural and Forest Meteorology 147: 110–124. doi:10.1016/j.agrformet.2007.07.005.
  • Hofle, B., and N. Pfeifer. 2007. “Correction of Laser Scanning Intensity Data: Data and Model-Driven Approaches.” Isprs Journal of Photogrammetry & Remote Sensing 62: 415–433. doi:10.1016/j.isprsjprs.2007.05.008.
  • Hopkinson, C., and L. Chasmer. 2009. “Testing LiDar Models of Fractional Cover Across Multiple Forest Ecozones.” Remote Sensing of Environment 113: 275–288. doi:10.1016/j.rse.2008.09.012.
  • Hopkinson, C., J. Lovell, L. Chasmer, D. Jupp, N. Kljun, and E. van Gorsel. 2013. “Integrating Terrestrial and Airborne Lidar to Calibrate a 3D Canopy Model of Effective Leaf Area Index.” Remote Sensing of Environment 136: 301–314. doi:10.1016/j.rse.2013.05.012.
  • Hosoi, F., Y. Nakai, and K. Omasa. 2010. “Estimation and Error Analysis of Woody Canopy Leaf Area Density Profiles Using 3-D Airborne and Ground-Based Scanning Lidar Remote-Sensing Techniques.” IEEE Transactions on Geoscience & Remote Sensing 48: 2215–2223. doi:10.1109/TGRS.2009.2038372.
  • Hosoi, F., and K. Omasa. 2006. “Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area Density Using High-Resolution Portable Scanning Lidar.” IEEE Transactions on Geoscience & Remote Sensing 44: 3610–3618. doi:10.1109/TGRS.2006.881743.
  • Jonckheere, I., S. Fleck, K. Nackaerts, B. Muys, P. Coppin, M. Weiss, and F. Baret. 2004. “Review of Methods for in situ Leaf Area Index Determination - Part I. Theories, Sensors and Hemispherical Photography.” Agricultural and Forest Meteorology 121: 19–35. doi:10.1016/j.agrformet.2003.08.027.
  • Lawrence, P. J., and T. N. Chase. 2007. “Representing a New MODIS Consistent Land Surface in the Community Land Model (CLM 3.0).” Journal of Geophysical Research: Biogeosciences 112. doi:10.1029/2006JG000168.
  • Li, L. Y., J. Chen, X. H. Mu, W. H. Li, G. J. Yan, D. H. Xie, and W. M. Zhang. 2020. “Quantifying Understory and Overstory Vegetation Cover Using UAV-Based RGB Imagery in Forest Plantation.” Remote Sensing 12 (1): 18.
  • Liu, J., A. K. Skidmore, S. Jones, T. J. Wang, M. Heurich, X. Zhu, and Y. F. Shi. 2018. “Large Off-Nadir Scan Angle of Airborne LiDar Can Severely Affect the Estimates of Forest Structure Metrics.” Isprs Journal of Photogrammetry & Remote Sensing 136: 13–25. doi:10.1016/j.isprsjprs.2017.12.004.
  • Lovell, J. L., D. L. B. Jupp, D. S. Culvenor, and N. C. Coops. 2003. “Using Airborne and Ground-Based Ranging Lidar to Measure Canopy Structure in Australian Forests.” Canadian Journal of Remote Sensing 29: 607–622. doi:10.5589/m03-026.
  • Luo, S. Z., J. M. Chen, C. Wang, A. Gonsamo, X. H. Xi, Y. Lin, M. J. Qian, D. L. Peng, S. Nie, and H. M. Qin. 2018. “Comparative Performances of Airborne LiDar Height and Intensity Data for Leaf Area Index Estimation.” IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing 11: 300–310. doi:10.1109/JSTARS.2017.2765890.
  • Luo, S. Z., C. Wang, F. F. Pan, X. H. Xi, G. C. Li, S. Nie, and S. B. Xia. 2015. “Estimation of Wetland Vegetation Height and Leaf Area Index Using Airborne Laser Scanning Data.” Ecological Indicators 48: 550–559. doi:10.1016/j.ecolind.2014.09.024.
  • Luo, S., C. Wang, X. Xi, S. Nie, X. Fan, H. Chen, X. Yang, D. Peng, Y. Lin, and G. Zhou. 2019. “Combining Hyperspectral Imagery and LiDar Pseudo-Waveform for Predicting Crop LAI, Canopy Height and Above-Ground Biomass.” Ecological Indicators 102: 801–812. doi:10.1016/j.ecolind.2019.03.011.
  • Nilson, T. 1971. “A Theoretical Analysis of the Frequency of Gaps in Plant Stands.” Agricultural Meteorology 8: 25–38. doi:10.1016/0002-1571(71)90092-6.
  • Ni-Meister, W., D. L. B. Jupp, and R. Dubayah. 2001. “Modeling Lidar Waveforms in Heterogeneous and Discrete Canopies.” IEEE Transactions on Geoscience & Remote Sensing 39: 1943–1958. doi:10.1109/36.951085.
  • Ni-Meister, W., S. Y. Lee, A. H. Strahler, C. E. Woodcock, C. Schaaf, T. A. Yao, K. J. Ranson, G. Q. Sun, and J. B. Blair. 2010. “Assessing General Relationships Between Aboveground Biomass and Vegetation Structure Parameters for Improved Carbon Estimate from Lidar Remote Sensing.” Journal of Geophysical Research-Biogeosciences 115 (G2): 12. doi:10.1029/2009JG000936.
  • Pang, Y., Z. Y. Li, H. B. Ju, H. Lu, W. Jia, L. Si, Y. Guo, et al. 2016. “LiChy: The Caf’s LiDar, CCD and Hyperspectral Integrated Airborne Observation System.” Remote Sensing 8: 16. doi:10.3390/rs8050398.
  • Parker, G. G., M. A. Lefsky, and D. J. Harding. 2001. “Light Transmittance in Forest Canopies Determined Using Airborne Laser Altimetry and In-Canopy Quantum Measurements.” Remote Sensing of Environment 76: 298–309. doi:10.1016/S0034-4257(00)00211-X.
  • Qi, J., D. Xie, J. Jiang, and H. Huang. 2022. “3D Radiative Transfer Modeling of Structurally Complex Forest Canopies Through a Lightweight Boundary-Based Description of Leaf Clusters.” Remote Sensing of Environment 283. doi:10.1016/j.rse.2022.113301.
  • Riano, D., F. Valladares, S. Condes, and E. Chuvieco. 2004. “Estimation of Leaf Area Index and Covered Ground from Airborne Laser Scanner (Lidar) in Two Contrasting Forests.” Agricultural and Forest Meteorology 124: 269–275. doi:10.1016/j.agrformet.2004.02.005.
  • Richardson, J. J., L. M. Moskal, and S. H. Kim. 2009. “Modeling Approaches to Estimate Effective Leaf Area Index from Aerial Discrete-Return LIDAR.” Agricultural and Forest Meteorology 149 (6–7): 1152–1160. doi:10.1016/j.agrformet.2009.02.007.
  • Roy, D. P., H. B. Kashongwe, and J. Armston. 2021. “The Impact of Geolocation Uncertainty on GEDI Tropical Forest Canopy Height Estimation and Change Monitoring.” Science of Remote Sensing 100024. doi:10.1016/j.srs.2021.100024.
  • Ryu, Y., G. Lee, S. Jeon, Y. Song, and H. Kimm. 2014. “Monitoring Multi-Layer Canopy Spring Phenology of Temperate Deciduous and Evergreen Forests Using Low-Cost Spectral Sensors.” Remote Sensing of Environment 149: 227–238. doi:10.1016/j.rse.2014.04.015.
  • Sánchez-Azofeifa, G. A., M. Kalácska, M. M. D. Espírito-Santo, G. W. Fernandes, and S. Schnitzer. 2009. “Tropical Dry Forest Succession and the Contribution of Lianas to Wood Area Index (WAI).” Forest Ecology and Management 258 (6): 941–948. doi:10.1016/j.foreco.2008.10.007.
  • Shao, G., S. C. Stark, D. R. A. de Almeida, and M. N. Smith. 2019. “Towards High Throughput Assessment of Canopy Dynamics: The Estimation of Leaf Area Structure in Amazonian Forests with Multitemporal Multi-Sensor Airborne Lidar.” Remote Sensing of Environment 221: 1–13. doi:10.1016/j.rse.2018.10.035.
  • Solberg, S., A. Brunner, K. H. Hanssen, H. Lange, E. Naesset, M. Rautiainen, and P. Stenberg. 2009. “Mapping LAI in a Norway Spruce Forest Using Airborne Laser Scanning.” Remote Sensing of Environment 113: 2317–2327. doi:10.1016/j.rse.2009.06.010.
  • Sumnall, M. J., T. R. Fox, R. H. Wynne, C. Blinn, and V. A. Thomas. 2016. “Estimating Leaf Area Index at Multiple Heights Within the Understorey Component of Loblolly Pine Forests from Airborne Discrete-Return Lidar.” International Journal of Remote Sensing 37: 78–99. doi:10.1080/01431161.2015.1117683.
  • Sumnall, M., A. Peduzzi, T. R. Fox, R. H. Wynne, V. A. Thomas, and B. Cook. 2016. “Assessing the Transferability of Statistical Predictive Models for Leaf Area Index Between Two Airborne Discrete Return LiDar Sensor Designs Within Multiple Intensely Managed Loblolly Pine Forest Locations in the South-Eastern USA.” Remote Sensing of Environment 176: 308–319. doi:10.1016/j.rse.2016.02.012.
  • Sumnall, M. J., A. Trlica, D. R. Carter, R. L. Cook, M. L. Schulte, O. C. Campoe, R. A. Rubilar, R. H. Wynne, and V. A. Thomas. 2021. “Estimating the Overstory and Understory Vertical Extents and Their Leaf Area Index in Intensively Managed Loblolly Pine (Pinus taeda L.) Plantations Using Airborne Laser Scanning.” Remote Sensing of Environment 254: 112250. doi:10.1016/j.rse.2020.112250.
  • Tang, H., and J. Armston. 2020. GEDI ATBD for Footprint Canopy Cover and Vertical Profile Metrics. https://lpdaac.usgs.gov/documents/588/GEDI_FCCVPM_ATBD_v1.0.pdf
  • Tang, H., R. Dubayah, M. Brolly, S. Ganguly, and G. Zhang. 2014. “Large-Scale Retrieval of Leaf Area Index and Vertical Foliage Profile from the Spaceborne Waveform Lidar (GLAS/ICESat).” Remote Sensing of Environment 154: 8–18. doi:10.1016/j.rse.2014.08.007.
  • Tang, H., R. Dubayah, A. Swatantran, M. Hofton, S. Sheldon, D. B. Clark, and B. Blair. 2012. “Retrieval of Vertical LAI Profiles Over Tropical Rain Forests Using Waveform Lidar at La Selva, Costa Rica.” Remote Sensing of Environment 124: 242–250. doi:10.1016/j.rse.2012.05.005.
  • Tang, H., S. Ganguly, G. Zhang, M. A. Hofton, R. F. Nelson, and R. Dubayah. 2016. “Characterizing Leaf Area Index (LAI) and Vertical Foliage Profile (VFP) Over the United States.” Biogeosciences 13: 239–252. doi:10.5194/bg-13-239-2016.
  • Tian, Y., R. E. Dickinson, L. Zhou, X. Zeng, Y. Dai, R. B. Myneni, Y. Knyazikhin, et al. 2004. “Comparison of Seasonal and Spatial Variations of Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation from Moderate Resolution Imaging Spectroradiometer (MODIS) and Common Land Model.” Journal of Geophysical Research Atmospheres 109 (D1). doi:10.1029/2003JD003777.
  • Wang, Y., and H. Fang. 2020. “Estimation of LAI with the LiDar Technology: A Review.” Remote Sensing 12 (20): 3457. doi:10.3390/rs12203457.
  • Wang, Y. S., D. R. Miller, J. M. Welles, and G. M. Heisler. 1992. “Spatial Variability of Canopy Foliage in an Oak Forest Estimated with Fisheye Sensors.” Forest Science 38: 854–865.
  • Wang, Y., W. Ni, G. Sun, H. Chi, Z. Zhang, and Z. Guo. 2019. “Slope-Adaptive Waveform Metrics of Large Footprint Lidar for Estimation of Forest Aboveground Biomass.” Remote Sensing of Environment 224: 386–400. doi:10.1016/j.rse.2019.02.017.
  • Weiss, M., and F. Baret. 2017. CAN-EYE V6.491 User Manual. https://www6.paca.inrae.fr/can-eye/Documentation/Documentation
  • Weiss, M., F. Baret, R. B. Myneni, A. Pragnere, and Y. Knyazikhin. 2000. “Investigation of a Model Inversion Technique to Estimate Canopy Biophysical Variables from Spectral and Directional Reflectance Data.” Agronomie 20: 3–22. doi:10.1051/agro:2000105.
  • Weiss, M., F. Baret, G. J. Smith, I. Jonckheere, and P. Coppin. 2004. “Review of Methods for in situ Leaf Area Index (LAI) Determination Part II. Estimation of LAI, Errors and Sampling.” Agricultural and Forest Meteorology 121: 37–53. doi:10.1016/j.agrformet.2003.08.001.
  • Wei, S., T. Yin, M. A. Dissegna, A. J. Whittle, G. L. F. Ow, M. L. M. Yusof, N. Lauret, and J. -P. Gastellu-Etchegorry. 2020. “An Assessment Study of Three Indirect Methods for Estimating Leaf Area Density and Leaf Area Index of Individual Trees.” Agricultural and Forest Meteorology 292-293: 108101. doi:10.1016/j.agrformet.2020.108101.
  • Widlowski, J. -L., C. Mio, M. Disney, J. Adams, I. Andredakis, C. Atzberger, J. Brennan, et al. 2015. “The Fourth Phase of the Radiative Transfer Model Intercomparison (RAMI) Exercise: Actual Canopy Scenarios and Conformity Testing.” Remote Sensing of Environment 169: 418–437. doi:10.1016/j.rse.2015.08.016.
  • Yang, P., C. van der Tol, T. Yin, and W. Verhoef. 2020. “The SPART Model: A Soil-Plant-Atmosphere Radiative Transfer Model for Satellite Measurements in the Solar Spectrum.” Remote Sensing of Environment 247: 111870. doi:10.1016/j.rse.2020.111870.
  • Yan, G., R. Hu, J. Luo, M. Weiss, H. Jiang, X. Mu, D. Xie, and W. Zhang. 2019. “Review of Indirect Optical Measurements of Leaf Area Index: Recent Advances, Challenges, and Perspectives.” Agricultural and Forest Meteorology 265: 390–411. doi:10.1016/j.agrformet.2018.11.033.
  • Yin, T., B. D. Cook, and D. C. Morton. 2022. “Three-Dimensional Estimation of Deciduous Forest Canopy Structure and Leaf Area Using Multi-Directional, Leaf-On and Leaf-Off Airborne Lidar Data.” Agricultural and Forest Meteorology 314: 108781. doi:10.1016/j.agrformet.2021.108781.
  • Yin, T., J. Qi, B. D. Cook, D. C. Morton, S. Wei, and J. -P. Gastellu-Etchegorry. 2020. “Modeling Small-Footprint Airborne Lidar-Derived Estimates of Gap Probability and Leaf Area Index.” Remote Sensing 12 (1): 4. doi:10.3390/rs12010004.
  • Zeng, W. J., and W. Wang. 2015. “Combination of Nitrogen and Phosphorus Fertilization Enhance Ecosystem Carbon Sequestration in a Nitrogen-Limited Temperate Plantation of Northern China.” Forest Ecology and Management 341: 59–66. doi:10.1016/j.foreco.2015.01.004.
  • Zhang, Y. H., H. L. Fang, L. Ma, Y. C. Ye, and Y. Wang. 2020. “Estimation of Forest Leaf Area Index and Clumping Index from the Global Positioning System (GPS) Satellite Carrier-To-Noise-Density Ratio (C/N 0).” Remote Sensing Letters 11 (2): 146–155. doi:10.1080/2150704X.2019.1692386.
  • Zhao, K. G., and S. Popescu. 2009. “Lidar-Based Mapping of Leaf Area Index and Its Use for Validating GLOBCARBON Satellite LAI Product in a Temperate Forest of the Southern USA.” Remote Sensing of Environment 113: 1628–1645. doi:10.1016/j.rse.2009.03.006.
  • Zheng, G., L. X. Ma, J. U. H. Eitel, W. He, T. S. Magney, L. M. Moskal, and M. S. Li. 2017. “Retrieving Directional Gap Fraction, Extinction Coefficient, and Effective Leaf Area Index by Incorporating Scan Angle Information from Discrete Aerial Lidar Data.” IEEE Transactions on Geoscience & Remote Sensing 55 (1): 577–590. doi:10.1109/TGRS.2016.2611651.
  • Zheng, G., and L. M. Moskal. 2009. “Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.” Sensors 9: 2719–2745. doi:10.3390/s90402719.
  • Zheng, G., and L. M. Moskal. 2012. “Computational-Geometry-Based Retrieval of Effective Leaf Area Index Using Terrestrial Laser Scanning.” IEEE Transactions on Geoscience & Remote Sensing 50: 3958–3969. doi:10.1109/TGRS.2012.2187907.
  • Zhu, X., A. K. Skidmore, T. Wang, J. Liu, R. Darvishzadeh, Y. Shi, J. Premier, and M. Heurich. 2018. “Improving Leaf Area Index (LAI) Estimation by Correcting for Clumping and Woody Effects Using Terrestrial Laser Scanning.” Agricultural and Forest Meteorology 263: 276–286. doi:10.1016/j.agrformet.2018.08.026.