821
Views
0
CrossRef citations to date
0
Altmetric
Research Article

LiDAR-change-based mapping of sediment movement from an extreme rainfall event

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Article: 2227394 | Received 23 Jan 2023, Accepted 15 Jun 2023, Published online: 25 Jun 2023

References

  • Anderson, S. W. 2019. ”Uncertainty in Quantitative Analyses of Topographic Change: Error Propagation and the Role of Thresholding.” Earth Surface Processes and Landforms 44 (5): 1015–21.
  • Besl, P. J., and H. D. McKay. 1992. “A Method for Registration of 3-D Shapes.” IEEE Transactions on Pattern Analysis & Machine Intelligence 14 (2): 239–256. https://doi.org/10.1109/34.121791.
  • Brasington, J., J. Langham, and B. Rumsby. 2003. “Methodological Sensitivity of Morphometric Estimates of Coarse Fluvial Sediment Transport.” Geomorphology 53 (3–4): 299–316. https://doi.org/10.1016/S0169-555X(02)00320-3.
  • Cavalli, M., B. Goldin, F. Comiti, F. Brardinoni, and L. Marchi. 2017. “Assessment of Erosion and Deposition in Steep Mountain Basins by Differencing Sequential Digital Terrain Models.” Geomorphology 291:4–16. https://doi.org/10.1016/j.geomorph.2016.04.009.
  • Challis, K., C. Carey, M. Kincey, and A. J. Howard. 2011. “Assessing the Preservation Potential of Temperate, Lowland Alluvial Sediment Using Airborne LiDar Intensity.” Journal of Archaeological Science 38 (2): 301–311. https://doi.org/10.1016/j.jas.2010.09.006.
  • Chaplot, V., F. Darboux, H. Bourennane, S. Leguédois, N. Silvera, and K. Phachomphon. 2006. “Accuracy of Interpolation Techniques for the Derivation of Digital Elevation Models in Relation to Landform Types and Data Density.” Geomorphology 77 (1–2): 126–141. https://doi.org/10.1016/j.geomorph.2005.12.010.
  • Chen, Z., J. Li, and B. Yang. 2021. “A Strip Adjustment Method of UAV-Borne LiDar Point Cloud Based on DEM Features for Mountainous Area.” Sensors 21 (8): 2782. https://doi.org/10.3390/s21082782.
  • Croke, J., P. Todd, C. Thompson, F. Watson, R. Denham, and G. Khanal. 2013. “The Use of Multi-Temporal LiDar to Assess Basin-Scale Erosion and Deposition Following the Catastrophic January 2011 Lockyer Flood, SE Queensland, Australia.” Geomorphology 184:111–126. https://doi.org/10.1016/j.geomorph.2012.11.023.
  • Eagleston, H., and J. L. Marion. 2020. “Application of Airborne LiDar and GIS in Modeling Trail Erosion Along the Appalachian Trail in New Hampshire, USA.” Landscape and Urban Planning 198:103765. https://doi.org/10.1016/j.landurbplan.2020.103765.
  • Favalli, M., A. Fornaciai, and M. T. Pareschi. 2009. “LIDAR Strip Adjustment: Application to Volcanic Areas.” Geomorphology 111 (3–4): 123–135. https://doi.org/10.1016/j.geomorph.2009.04.010.
  • Fekry, R., W. Yao, L. Cao, and X. Shen. 2021. “Marker-Less UAV-Lidar Strip Alignment in Plantation Forests Based on Topological Persistence Analysis of Clustered Canopy Cover.” ISPRS International Journal of Geo-Information 10 (5): 284. https://doi.org/10.3390/ijgi10050284.
  • Glira, P., N. Pfeifer, C. Briese, and C. Ressi. 2015. “Rigorous Strip Adjustment of Airborne Laserscanning Data Based on the ICP Algorithm.” ISPRS Annals of the Photogrammetry, Remote Sensing & Spatial Information Sciences II-3W (5): 73–80. https://doi.org/10.5194/isprsannals-II-3-W5-73-2015.
  • Grove, J. R., J. Croke, and C. Thompson. 2013. “Quantifying Different Riverbank Erosion Processes During an Extreme Flood Event.” Earth Surface Processes and Landforms 38:1393–1406. https://doi.org/10.1002/esp.3386.
  • Guo, Q., W. Li, H. Yu, and O. Alvarez. 2010. “Effects of Topographic Variability and Lidar Sampling Density on Several DEM Interpolation Methods.” Photogrammetric Engineering and Remote Sensing 76 (6): 701–712. https://doi.org/10.14358/PERS.76.6.701.
  • Heidemann, H. K. 2018. Lidar Base Specification (Ver. 1.3, February 2018): U.S. Geological Survey Techniques and Methods, Book 11, Chap. B4, 101 P. US Geological Survey. https://doi.org/10.3133/tm11b4.
  • Hodgson, M. E., and P. Bresnahan. 2004. “Accuracy of Airborne Lidar-Derived Elevation: Empirical Assessment and Error Budget.” Photogrammetric Engineering & Remote Sensing 70 (3): 331–339. https://doi.org/10.14358/PERS.70.3.331.
  • Hodgson, M. E., and G. Morgan. 2021. “Modeling Sensitivity of Topographic Change with sUAS Imagery.” Geomorphology 375 (15): 107563. https://doi.org/10.1016/j.geomorph.2020.107563.
  • James, L. A., M. E. Hodgson, S. Ghoshal, and M. M. Latiolais. 2012. “Geomorphic Change Detection Using Historic Maps and DEM Differencing: The Temporal Dimension of Geospatial Analysis.” Geomorphology 137 (1): 181–198. https://doi.org/10.1016/j.geomorph.2010.10.039.
  • Kim, M.-K., H.-G. Sohn, and S. Kim. 2020. “Incorporating the Effect of ALS-Derived DEM Uncertainty for Quantifying Changes Due to the Landslide in 2011, Mt. Umyeon, Seoul.” GIScience and Remote Sensing 57 (3): 287–301. https://doi.org/10.1080/15481603.2019.1687133.
  • Lane, S. N., R. M. Westaway, and D. Murray Hicks. 2003. “Estimation of Erosion and Deposition Volumes in a Large, Gravel-Bed, Braided River Using Synoptic Remote Sensing.” Earth Surface Processes and Landforms 28 (3): 249–271. https://doi.org/10.1002/esp.483.
  • MacEachren, A. M., and J. V. Davidson. 1987. “Sampling and Isometric Mapping of Continuous Geographic Surfaces.” The American Cartographer 14 (4): 299–320. https://doi.org/10.1559/152304087783875723.
  • Maling, D. H. 1989. Measurement of Area. New York: Elsevier. https://doi.org/10.1016/B978-0-08-030290-4.50010-4.
  • Milan, D. J., G. L. Heritage, A. R. Large, and I. C. Fuller. 2011. “Filtering Spatial Error from DEMs: Implications for Morphological Change Estimation.” Geomorphology 125 (1): 160–171. https://doi.org/10.1016/j.geomorph.2010.09.012.
  • Nourbakhshbeidokhti, S., A. M. Kinoshita, A. Chin, and J. L. Florsheim. 2019. “A Workflow to Estimate Topographic and Volumetric Changes and Errors in Channel Sedimentation After Disturbance.” Remote Sensing 11 (5): 586. https://doi.org/10.3390/rs11050586.
  • Nuth, C., and A. Kääb. 2011. “Co-Registration and Bias Corrections of Satellite Elevation Data Sets for Quantifying Glacier Thickness Change.” The Cryosphere 5 (1): 271–290. https://doi.org/10.5194/tc-5-271-2011.
  • Pelletier, J. D., and C. A. Orem. 2014. “How Do Sediment Yields from Post-Wildfire Debris-Laden Flows Depend on Terrain Slope, Soil Burn Severity Class, and Drainage Basin Area? Insights from Airborne-LiDar Change Detection.” Earth Surface Processes and Landforms 39 (13): 1822–1832. https://doi.org/10.1002/esp.3570.
  • Perroy, R. L., B. Bookhagen, G. P. Asner, and O. A. Chadwick. 2010. “Comparison of Gully Erosion Estimates Using Airborne and Ground-Based LiDar on Santa Cruz Island, California.” Geomorphology 118 (3–4): 288–300. https://doi.org/10.1016/j.geomorph.2010.01.009.
  • Quantum Spatial. 2015. Focus on Fort Jackson: LiDAR Q/C and Data Exploitation Report. dated 16 April 2015.
  • Rentsch, M., and P. Krzystek. 2012. “Lidar Strip Adjustment with Automatically Reconstructed Roof Shapes.” Photogrammetric Record 27 (139): 272–292. https://doi.org/10.1111/j.1477-9730.2012.00690.x.
  • Schaffrath, R., P. Belmont, and J. Wheaton. 2015. “Landscape-Scale Geomorphic Change Detection: Quantifying Spatial Variable Uncertainty and Circumventing Legacy Data Issues.” Geomorphology 250:334–348. https://doi.org/10.1016/j.geomorph.2015.09.020.
  • Singh, A. 1989. “Review Article Digital Change Detection Techniques Using Remote Sensing.” International Journal of Remote Sensing 10 (6): 989–1003. https://doi.org/10.1080/01431168908903939.
  • Streutker, D. R., N. F. Glenn, and R. Shrestha. 2011. “A Slope-Based Method for Matching Elevation Surfaces.” Photogrammetric Engineering & Remote Sensing 77 (7): 743–750. https://doi.org/10.14358/PERS.77.7.743.
  • Toth, C., and D. A. Grejner-Brzezinska 2009. Airborne LiDar Reflective Linear Feature Extraction for Strip Adjustment and Horizontal Accuracy Determination. Ohio Department of Transportation, Report No. FHWA/OH-2008/15. https://rosap.ntl.bts.gov/view/dot/18475.
  • Tseng, C. M., C. W. Lin, C. P. Stark, J. K. Liu, L. Y. Fei, and Y. C. Hsieh. 2013. “Application of a Multi‐Temporal, LiDar‐Derived, Digital Terrain Model in a Landslide‐Volume Estimation.” Earth Surface Processes and Landforms 38 (13): 1587–1601. https://doi.org/10.1002/esp.3454.
  • USGS. 2022. Lidar Base Specification (Ver. 2022 Rev A, April 2022). https://www.usgs.gov/ngp-standards-and-specifications/lidar-base-specification-online.
  • Vaaja, M., J. Hyyppa, A. Kukko, H. Kaartinen, H. Hyyppa, and P. Alho. 2011. “Mapping Topography Changes and Elevation Uncertainty Using a Mobile Laser Scanner.” Remote Sensing 3 (3): 587–600. https://doi.org/10.3390/rs3030587.
  • Wheaton, J. M., J. Brasington, S. E. Darby, and D. A. Sear. 2009. “Accounting for Uncertainty in DEMs from Repeat Topographic Surveys: Improved Sediment Budgets.” Earth Surface Processes and Landforms 156:136–156. https://doi.org/10.1002/esp.1886.
  • Zhang, Y., X. Xiong, M. Zheng, and X. Huang. 2015. “LiDar Strip Adjustment Using Multifeatures Matched with Aerial Images.” IEEE Transactions on Geoscience and Remote Sensing 53 (2): 976–987. https://doi.org/10.1109/TGRS.2014.2331234.