Publication Cover
LEUKOS
The Journal of the Illuminating Engineering Society
Volume 20, 2024 - Issue 2
244
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of Luminance Contrast on Depth Perception in Optical See-Through Augmented Reality

, , , &
Pages 194-208 | Received 08 Feb 2023, Accepted 07 Jun 2023, Published online: 18 Jul 2023

References

  • Abd-Alhamid F, Kent M, Bennett C, Calautit J, Wu Y. 2019. Developing an innovative method for visual perception evaluation in a physical-based virtual environment. Build Environ. 162:106278. doi:10.1016/j.buildenv.2019.106278.
  • Adams H, Stefanucci J, Creem-Regehr S, Bodenheimer B. 2022. Depth perception in augmented reality: the effects of display, shadow, and position. In: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Christchurch, New Zealand, IEEE. p. 792–801.
  • Andre J, Rogers S. 2006. Using verbal and blind-walking distance estimates to investigate the two visual systems hypothesis. Percept Psychophys. 68(3):353–361. doi:10.3758/BF03193682.
  • Chamilothori K, Wienold J, Andersen M. 2019. Adequacy of immersive virtual reality for the perception of daylit spaces: comparison of real and virtual environments. Leukos. 15(2–3):203–226. doi:10.1080/15502724.2017.1404918.
  • Coules J. 1955. Effect of photometric brightness on judgments of distance. J Exp Psychol. 50(1):19. doi:10.1037/h0044343.
  • Creem-Regehr SH, Stefanucci JK, Thompson WB. 2015. Perceiving absolute scale in virtual environments: how theory and application have mutually informed the role of body-based perception. In: Psychology of learning and motivation. Vol. 62. Academic Press. p. 195–224.
  • Cutting JE, Vishton PM. 1995. Perceiving layout and knowing distances: the integration, relative potency, and contextual use of different information about depth. In: Perception of space and motion. Academic Press. p. 69–117.
  • Cuttle C. 1971. Lighting patterns and the flow of light. Light Res Technol. 3(3):171–189. doi:10.1177/096032717100300301.
  • De Paolis LT, De Luca V. 2019. Augmented visualization with depth perception cues to improve the surgeon’s performance in minimally invasive surgery. Med Biol Eng Comput. 57(5):995–1013. doi:10.1007/s11517-018-1929-6.
  • Diaz C, Walker M, Szafir DA, Szafir D. 2017. Designing for depth perceptions in augmented reality. In: 2017 IEEE international symposium on mixed and augmented reality (ISMAR), Nantes, France, IEEE. p. 111–122.
  • Egusa H. 1982. Effect of brightness on perceived distance as a figure—Ground phenomenon. Perception. 11(6):671–676. doi:10.1068/p110671.
  • Egusa H. 1983. Effects of brightness, hue, and saturation on perceived depth between adjacent regions in the visual field. Perception. 12(2):167–175. doi:10.1068/p120167.
  • Farnè M. 1977. Brightness as an indicator to distance: relative brightness per se or contrast with the background? Perception. 6(3):287–293. doi:10.1068/p060287.
  • Gao Y, Peillard E, Normand J-M, Moreau G, Liu Y, Wang Y. 2020. Influence of virtual objects’ shadows and lighting coherence on distance perception in optical see-through augmented reality. J Soc Inf Disp. 28(2):117–135. doi:10.1002/jsid.832.
  • Grechkin TY, Nguyen TD, Plumert JM, Cremer JF, Kearney JK. 2010. How does presentation method and measurement protocol affect distance estimation in real and virtual environments? ACM Trans Appl Percept. 7(4):1–18. doi:10.1145/1823738.1823744.
  • Hertel J, Steinicke F. 2021. Augmented reality for maritime navigation assistance-egocentric depth perception in large distance outdoor environments. In: 2021 IEEE Virtual Reality and 3D User Interfaces (VR). Lisboa, Portugal: IEEE. p. 122–130.
  • Johns EH, Sumner FC. 1948. Relation of the brightness differences of colors to their apparent distances. J Psychol. 26(1):25–29. doi:10.1080/00223980.1948.9917393.
  • Jones JA, Swan JE, Singh G, Ellis SR. 2011. Peripheral visual information and its effect on distance judgments in virtual and augmented environments. In: Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization, Toulouse, France. p. 29–36.
  • Knulst AJ, van Dongen J, Groenewegen MW, Kaptein ED, Dankelman J. 2011. The effect of shadows on performing stereo visual pointing tasks: is shadow-free open surgery ideal? Leukos. 8(2):111–122. doi:10.1582/LEUKOS.2011.08.02.002.
  • Lappin JS, Shelton AL, Rieser JJ. 2006. Environmental context influences visually perceived distance. Percept Psychophys. 68(4):571–581. doi:10.3758/BF03208759.
  • Livingston MA, Ai Z, Swan JE, Smallman HS. 2009. Indoor vs. outdoor depth perception for mobile augmented reality. In: 2009 IEEE Virtual Reality Conference, NW Washington, DC: IEEE. p. 55–62.
  • Loomis JM, Philbeck JW. 2008. Measuring spatial perception with spatial updating and action. In: Klatzky RL, MacWhinney B, Behrman M, editors. Embodiment, ego-space, and action. Psychology Press. p. 17–60.
  • Patterson R, Winterbottom MD, Pierce BJ. 2006. Perceptual issues in the use of head-mounted visual displays. Hum Factors. 48(3):555–573. doi:10.1518/001872006778606877.
  • Peillard E, Thebaud T, Normand J-M, Argelaguet F, Moreau G, Lécuyer A. 2019. Virtual objects look farther on the sides: the anisotropy of distance perception in virtual reality. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, IEEE. p. 227–236.
  • Ping J, Thomas BH, Baumeister J, Guo J, Weng D, Liu Y. 2020. Effects of shading model and opacity on depth perception in optical see-through augmented reality. J Soc Inf Disp. 28(11):892–904. doi:10.1002/jsid.947.
  • Rockcastle S, Danell M, Calabrese E, Sollom-Brotherton G, Mahic A, Van Den Wymelenberg K, Davis R. 2021. Comparing perceptions of a dimmable LED lighting system between a real space and a virtual reality display. Light Res Technol. 53(8):701–725. doi:10.1177/1477153521990039.
  • Rosales CS, Pointon G, Adams H, Stefanucci J, Creem-Regehr S, Thompson WB, Bodenheimer B. 2019. Distance judgments to on-and off-ground objects in augmented reality. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, IEEE. p. 237–243.
  • Singh G 2013. Near-field depth perception in optical see-though augmented reality [ PhD Thesis]. [place unknown]: Mississippi State University.
  • Singh G, Ellis SR, Swan JE. 2018. The effect of focal distance, age, and brightness on near-field augmented reality depth matching. IEEE Trans Vis Comput Graph. 26(2):1385–1398. doi:10.1109/TVCG.2018.2869729.
  • Stefanucci JK, Creem-Regehr S, Bodenheimer B. 2021. Comparing distance judgments in real and augmented reality. In: 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Bari, Italy, IEEE. p. 82–86.
  • Stroup WW. 2012. Generalized linear mixed models: modern concepts, methods and applications. Boca Raton: CRC press.
  • Swan JE, Jones A, Kolstad E, Livingston MA, Smallman HS. 2007. Egocentric depth judgments in optical, see-through augmented reality. IEEE Trans Vis Comput Graph. 13(3):429–442. doi:10.1109/TVCG.2007.1035.
  • Swan JE, Singh G, Ellis SR. 2015. Matching and reaching depth judgments with real and augmented reality targets. IEEE Trans Vis Comput Graph. 21(11):1289–1298. doi:10.1109/TVCG.2015.2459895.
  • Yount ZF, Kass SJ, Arruda JE. 2022. Route learning with augmented reality navigation aids. Transp Res Part F. 88:132–140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.