2,760
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Direct regulation of FNIP1 and FNIP2 by MEF2 sustains MTORC1 activation and tumor progression in pancreatic cancer

, , , , , , , , , , , & show all
Pages 505-524 | Received 12 Jan 2023, Accepted 12 Sep 2023, Published online: 29 Sep 2023

References

  • Blenis J. TOR, the gateway to cellular metabolism, cell growth, and disease. Cell. 2017 Sep 21;171(1):10–13. doi: 10.1016/j.cell.2017.08.019
  • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007 Jul;12(1):9–22. doi: 10.1016/j.ccr.2007.05.008
  • Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020 Apr;21(4):183–203. doi: 10.1038/s41580-019-0199-y
  • Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017 Mar 9;168(6):960–976. doi: 10.1016/j.cell.2017.02.004
  • Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011 Jan;12(1):21–35. doi: 10.1038/nrm3025
  • Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol. 2013 Jun;15(6):555–564. doi: 10.1038/ncb2763
  • Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer. 2018 Dec;18(12):744–757. doi: 10.1038/s41568-018-0074-8
  • Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006 Sep;6(9):729–734. doi: 10.1038/nrc1974
  • Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014 Jul;24(7):400–406. doi: 10.1016/j.tcb.2014.03.003
  • Durán RV, Hall MN. Regulation of TOR by small GTPases. EMBO Rep. 2012 Feb 1;13(2):121–128. doi: 10.1038/embor.2011.257
  • Demetriades C, Plescher M, Teleman AA. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016 Feb 12;7(1):10662. doi: 10.1038/ncomms10662
  • Inoki K, Li Y, Xu T, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003 Aug 1;17(15):1829–1834. doi: 10.1101/gad.1110003
  • Yang H, Jiang X, Li B, et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature. 2017 Dec 21;552(7685):368–373. doi: 10.1038/nature25023
  • Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008 Jun 13;320(5882):1496–1501. doi: 10.1126/science.1157535
  • Kim E, Goraksha-Hicks P, Li L, et al. Regulation of TORC1 by rag GTPases in nutrient response. Nat Cell Biol. 2008 Aug;10(8):935–945. doi: 10.1038/ncb1753
  • Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002 Jul 26;110(2):177–189. doi: 10.1016/S0092-8674(02)00833-4
  • Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002 Jul 26;110(2):163–175. doi: 10.1016/S0092-8674(02)00808-5
  • Rogala KB, Gu X, Kedir JF, et al. Structural basis for the docking of mTORC1 on the lysosomal surface. Science. 2019 Oct 25;366(6464):468–475. doi: 10.1126/science.aay0166
  • Bos JL, Rehmann H, Wittinghofer A. Gefs and GAPs: critical elements in the control of small G proteins. Cell. 2007 Jun 1;129(5):865–877. doi: 10.1016/j.cell.2007.05.018
  • Hesketh GG, Papazotos F, Pawling J, et al. The GATOR–rag GTPase pathway inhibits mTORC1 activation by lysosome-derived amino acids. Science. 2020 Oct 16;370(6514):351–356. doi: 10.1126/science.aaz0863
  • Petit CS, Roczniak-Ferguson A, Ferguson SM. Recruitment of folliculin to lysosomes supports the amino acid–dependent activation of rag GTPases. J Cell Bio. 2013 Sep 30;202(7):1107–1122. doi: 10.1083/jcb.201307084
  • Shen K, Rogala KB, Chou HT, et al. Cryo-EM structure of the human FLCN-FNIP2-Rag-Ragulator complex. Cell. 2019 Nov 27;179(6):1319–1329.e8. doi: 10.1016/j.cell.2019.10.036
  • Takagi Y, Kobayashi T, Shiono M, et al. Interaction of folliculin (birt-hogg-dubé gene product) with a novel Fnip1-like (FnipL/fnip2) protein. Oncogene. 2008 Sep 11;27(40):5339–5347. doi: 10.1038/onc.2008.261
  • Yang G, Humphrey SJ, Murashige DS, et al. RagC phosphorylation autoregulates mTOR complex 1. EMBO J. 2019 Feb 1;38(3). doi: 10.15252/embj.201899548
  • Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends in cell biology. Trends Cell Biol. 2015 Sep;25(9):545–555. doi: 10.1016/j.tcb.2015.06.002
  • Cipponi A, Goode DL, Bedo J, et al. MTOR signaling orchestrates stress-induced mutagenesis, facilitating adaptive evolution in cancer. Science. 2020 Jun 5;368(6495):1127–1131. doi: 10.1126/science.aau8768
  • Chen J, Ou Y, Yang Y, et al. KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. Nature. 2018 May;557(7706):585–589. doi: 10.1038/s41586-018-0128-9
  • Han J, Jiang Y, Li Z, et al. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature. 1997 Mar 20;386(6622):296–299. doi: 10.1038/386296a0
  • Pallavi SK, Ho DM, Hicks C, et al. Notch and Mef2 synergize to promote proliferation and metastasis through JNK signal activation in drosophila. EMBO J. 2012 Jun 29;31(13):2895–2907. doi: 10.1038/emboj.2012.129
  • Potthoff MJ, Olson EN. MEF2: a central regulator of diverse developmental programs. Development (Cambridge, England). Development. 2007 Dec;134(23):4131–4140. doi: 10.1242/dev.008367
  • Okamoto S, Li Z, Ju C, et al. Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis. Proc Natl Acad Sci, USA. 2002 Mar 19;99(6):3974–3979. doi: 10.1073/pnas.022036399
  • Ornatsky OI, Andreucci JJ, McDermott JC. A dominant-negative form of transcription factor MEF2 inhibits myogenesis. J Biol Chem. 1997 Dec 26;272(52):33271–33278. doi: 10.1074/jbc.272.52.33271
  • Andrés V, Cervera M, Mahdavi V. Determination of the consensus binding site for MEF2 expressed in muscle and brain reveals tissue-specific sequence constraints. J Biol Chem. 1995 Oct 6;270(40):23246–23249. doi: 10.1074/jbc.270.40.23246
  • Cole CJ, Mercaldo V, Restivo L, et al. MEF2 negatively regulates learning-induced structural plasticity and memory formation. Nat Neurosci. 2012 Sep;15(9):1255–1264. doi: 10.1038/nn.3189
  • Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008 Feb 28;451(7182):1125–1129. doi: 10.1038/nature06607
  • Mao Z, Bonni A, Xia F, et al. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science. 1999 Oct 22;286(5440):785–790. doi: 10.1126/science.286.5440.785
  • Yu W, Huang C, Wang Q, et al. MEF2 transcription factors promotes EMT and invasiveness of hepatocellular carcinoma through TGF-β1 autoregulation circuitry. Tumor Biol. 2014 Nov;35(11):10943–10951. doi: 10.1007/s13277-014-2403-1
  • McDonald C, Karstegl CE, Kellam P, et al. Regulation of the Epstein-Barr virus zp promoter in B lymphocytes during reactivation from latency. J Gen Virol. 2010 Mar;91(3):622–629. doi: 10.1099/vir.0.017277-0
  • Nagel S, Meyer C, Quentmeier H, et al. MEF2C is activated by multiple mechanisms in a subset of T-acute lymphoblastic leukemia cell lines. Leukemia. 2008 Mar;22(3):600–607. doi: 10.1038/sj.leu.2405067
  • Clark RI, Tan SW, Péan CB, et al. MEF2 is an in vivo immune-metabolic switch. Cell. 2013 Oct 10;155(2):435–447. doi: 10.1016/j.cell.2013.09.007
  • Han TH, Prywes R. Regulatory role of MEF2D in serum induction of the c-jun promoter. Mol Cell Biol. 1995 Jun;15(6):2907–2915. doi: 10.1128/MCB.15.6.2907
  • Hara K, Yonezawa K, Weng QP, et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 1998 Jun 5;273(23):14484–14494. doi: 10.1074/jbc.273.23.14484
  • Liu B, Wang L, Jiang W, et al. Myocyte enhancer factor 2A delays vascular endothelial cell senescence by activating the PI3K/p-Akt/SIRT1 pathway. Aging. 2019 Jun 10;11(11):3768–3784. doi: 10.18632/aging.102015
  • Battaglioni S, Benjamin D, Wälchli M, et al. mTOR substrate phosphorylation in growth control. Cell. 2022 May 26;185(11):1814–1836. doi: 10.1016/j.cell.2022.04.013
  • Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011 Feb;13(2):132–141. doi: 10.1038/ncb2152
  • Yu Y, Yoon SO, Poulogiannis G, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011 Jun 10;332(6035):1322–1326. doi: 10.1126/science.1199484
  • Schmidt EK, Clavarino G, Ceppi M, et al. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009 Apr;6(4):275–277. doi: 10.1038/nmeth.1314
  • Fingar DC, Salama S, Tsou C, et al. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2022 Jun 15;16(12):1472–1487. doi: 10.1101/gad.995802
  • Kaya-Okur HS, Wu SJ, Codomo CA, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun. 2019 Apr 29;10(1):1930. doi: 10.1038/s41467-019-09982-5
  • Bar-Peled L, Schweitzer LD, Zoncu R, et al. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell. 2012 Sep 14;150(6):1196–1208. doi: 10.1016/j.cell.2012.07.032
  • Tsun ZY, Bar-Peled L, Chantranupong L, et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Molecular Cell. 2013 Nov 21;52(4):495–505. doi: 10.1016/j.molcel.2013.09.016
  • Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annual review of cell and developmental biology. Annu Rev Cell Dev Biol. 1997;13(1):513–609. doi: 10.1146/annurev.cellbio.13.1.513
  • Kim LC, Song L, Haura EB. Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol. 2009 Oct;6(10):587–595. doi: 10.1038/nrclinonc.2009.129
  • Song L, Liu Z, Hu HH, et al. Proto-oncogene src links lipogenesis via lipin-1 to breast cancer malignancy. Nat Commun. 2020 Nov 17;11(1):5842. doi: 10.1038/s41467-020-19694-w
  • Gong X, Tang X, Wiedmann M, et al. Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron. 2003 Apr 10;38(1):33–46. doi: 10.1016/S0896-6273(03)00191-0
  • Ornatsky OI, Cox DM, Tangirala P, et al. Post-translational control of the MEF2A transcriptional regulatory protein. Nucleic Acids Res. 1999 Jul 1;27(13):2646–2654. doi: 10.1093/nar/27.13.2646
  • Shalizi A, Gaudilliére B, Yuan Z, et al. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science. 2006 Feb 17;311(5763):1012–1017. doi: 10.1126/science.1122513
  • Yang Q, She H, Gearing M, et al. Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science. 2009 Jan 2;323(5910):124–127. doi: 10.1126/science.1166088
  • Peterson TR, Sengupta SS, Harris TE, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell. 2011 Aug 5;146(3):408–420. doi: 10.1016/j.cell.2011.06.034
  • Di Malta C, Siciliano D, Calcagni A, et al. Transcriptional activation of RagD GTPase controls mTORC1 and promotes cancer growth. Science. 2017 Jun 16;356(6343):1188–1192. doi: 10.1126/science.aag2553
  • Zhao M, New L, Kravchenko VV, et al. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol. 1999 Jan;19(1):21–30. doi: 10.1128/MCB.19.1.21
  • Ornatsky OI, McDermott JC. MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and non-muscle cells. J Biol Chem. 1996 Oct 4;271(40):24927–24933. doi: 10.1074/jbc.271.40.24927
  • Suzuki E, Satonaka H, Nishimatsu H, et al. Myocyte enhancer factor 2 mediates vascular inflammation via the p38-dependent pathway. Circ Res. 2004 Jul 9;95(1):42–49. doi: 10.1161/01.RES.0000134631.75684.4A
  • Yin Y, She H, Li W, et al. Modulation of neuronal survival factor MEF2 by kinases in Parkinson’s disease. Front Physiol. 2012;3:171. doi: 10.3389/fphys.2012.00171
  • Ralston R, Bishop JM. The product of the protooncogene c-src is modified during the cellular response to platelet-derived growth factor. Proc Natl Acad Sci, USA. 1985 Dec;82(23):7845–7849. doi: 10.1073/pnas.82.23.7845
  • Yang W, Xia Y, Ji H, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. 2011 Dec 1;480(7375):118–122. doi: 10.1038/nature10598
  • Pal R, Palmieri M, Chaudhury A, et al. Src regulates amino acid-mediated mTORC1 activation by disrupting GATOR1-rag GTPase interaction. Nat Commun. 2018 Oct 19;9(1):4351. doi: 10.1038/s41467-018-06844-4
  • Pon JR, Marra MA. MEF2 transcription factors: developmental regulators and emerging cancer genes. Oncotarget. 2016 Jan 19;7(3):2297–2312. doi: 10.18632/oncotarget.6223
  • Wang X, Tang X, Li M, et al. Regulation of neuroprotective activity of myocyte-enhancer factor 2 by cAMP-protein kinase a signaling pathway in neuronal survival. J Biol Chem. 2005 Apr 29;280(17):16705–16713. doi: 10.1074/jbc.M501819200
  • Abu-Remaileh M, Wyant GA, Kim C, et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science. 2017 Nov 10;358(6364):807–813. doi: 10.1126/science.aan6298
  • O’Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of bcr-abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant abl kinase domain mutants. Cancer Res. 2005 Jun 1;65(11):4500–4505. doi: 10.1158/0008-5472.CAN-05-0259