1,011
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Artesunate Sensitizes human hepatocellular carcinoma to sorafenib via exacerbating AFAP1L2-SRC-FUNDC1 axis-dependent mitophagy

, , , , , , , , & show all
Pages 541-556 | Received 30 Oct 2022, Accepted 16 Sep 2023, Published online: 05 Oct 2023

References

  • Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA: A Cancer J Clin. 2015;65:87–108. doi: 10.3322/caac.21262
  • Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–390. doi: 10.1056/NEJMoa0708857
  • Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389:56–66. doi: 10.1016/S0140-6736(16)32453-9
  • Cheng AL, Qin S, Ikeda M, et al. IMbrave150: efficacy and safety results from a ph III study evaluating atezolizumab (atezo) + bevacizumab (bev) vs sorafenib (sor) as first treatment (tx) for patients (pts) with unresectable hepatocellular carcinoma (HCC). Ann Oncol. 2019;30:ix186–ix187. doi: 10.1093/annonc/mdz446.002
  • Zhu AX, Park JO, Ryoo B-Y, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015;16:859–870. doi: 10.1016/S1470-2045(15)00050-9
  • Abou-Alfa GK, Johnson P, Knox JJ, et al. Doxorubicin plus sorafenib vs doxorubicin alone in patients with advanced hepatocellular carcinoma: a randomized trial. JAMA. 2010;304:2154–2160. doi: 10.1001/jama.2010.1672
  • Wu H, Wang T, Liu Y, et al. Mitophagy promotes sorafenib resistance through hypoxia-inducible ATAD3A dependent axis. J Exp Clin Cancer Res. 2020;39:274. doi: 10.1186/s13046-020-01768-8
  • Sun X, Yan P, Zou C, et al. Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives. Med Res Rev. 2019;39:2172–2193. doi: 10.1002/med.21580
  • Zhang J, Sun X, Wang L, et al. Artesunate-induced mitophagy alters cellular redox status. Redox Biol. 2018;19:263–273. doi: 10.1016/j.redox.2018.07.025
  • Chen WJ, Ma Z, Yu L, et al. Preclinical investigation of artesunate as a therapeutic agent for hepatocellular carcinoma 2 via impairing Glucocerebrosidase-mediated autophagic degradation. Exp Mol Med. 2022;54:1536–1548. doi: 10.1038/s12276-022-00780-6
  • Markowitsch SD, Schupp P, Lauckner J, et al. Artesunate inhibits growth of sunitinib-resistant renal cell carcinoma cells through cell cycle arrest and induction of Ferroptosis. Cancers (Basel). 2020;12(11):3150. doi: 10.3390/cancers12113150
  • Zhao F, Vakhrusheva O, Markowitsch SD, et al. Artesunate impairs growth in cisplatin-resistant bladder cancer cells by cell cycle arrest, apoptosis and autophagy induction. Cells. 2020;9(12):2643. doi: 10.3390/cells9122643
  • Shiozaki A, Shen-Tu G, Bai X, et al. XB130 mediates cancer cell proliferation and survival through multiple signaling events downstream of Akt. PLoS One. 2012;7(8):e43646. doi: 10.1371/journal.pone.0043646
  • Zhang R, ZHANG J, WU Q, et al. XB130: a novel adaptor protein in cancer signal transduction. Biomed Rep. 2016;4(3):300–306. doi: 10.3892/br.2016.588
  • Chen M, Chen Z, Wang Y, et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy. 2016;12(4):689–702. doi: 10.1080/15548627.2016.1151580
  • Lanczky A, Győrffy B. Web-based survival analysis tool tailored for Medical Research (KMplot): development and implementation. J Med Internet Res. 2021;23:e27633. doi: 10.2196/27633
  • Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol. 2018;15:536–554. doi: 10.1038/s41575-018-0033-6
  • Xu J, Ji L, Ruan Y, et al. UBQLN1 mediates sorafenib resistance through regulating mitochondrial biogenesis and ROS homeostasis by targeting PGC1β in hepatocellular carcinoma. Sig Transduct Target Ther. 2021;6:190. doi: 10.1038/s41392-021-00594-4
  • Feng J, Dai W, Mao Y, et al. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res. 2020;39:24. doi: 10.1186/s13046-020-1528-x
  • Niu L, Liu L, Yang S, et al. New insights into sorafenib resistance in hepatocellular carcinoma: responsible mechanisms and promising strategies. Biochim Et Biophys Act (BBA) - Rev Cancer. 2017;1868:564–570. doi: 10.1016/j.bbcan.2017.10.002
  • Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012;14(2):177–185. doi: 10.1038/ncb2422
  • von Hagens C, Walter-Sack I, Goeckenjan M, et al. Prospective open uncontrolled phase I study to define a well-tolerated dose of oral artesunate as add-on therapy in patients with metastatic breast cancer (ARTIC M33/2). Breast Cancer Res Treat. 2017;164(2):359–369. doi: 10.1007/s10549-017-4261-1
  • Deeken JF, Wang H, Hartley M, et al. A phase I study of intravenous artesunate in patients with advanced solid tumor malignancies. Cancer Chemother Pharmacol. 2018;81(3):587–596. doi: 10.1007/s00280-018-3533-8
  • Li ZJ, Dai H-Q, Huang X-W, et al. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol Sin. 2021;42(2):301–310. doi: 10.1038/s41401-020-0478-3
  • Yao X, Zhao C-R, Yin H, et al. Synergistic antitumor activity of sorafenib and artesunate in hepatocellular carcinoma cells. Acta Pharmacol Sin. 2020;41(12):1609–1620. doi: 10.1038/s41401-020-0395-5
  • He W, Huang X, Berges, BK, et al. Artesunate regulates neurite outgrowth inhibitor protein B receptor to overcome resistance to sorafenib in hepatocellular carcinoma cells. Front Pharmacol. 2021;12:615889. doi: 10.3389/fphar.2021.615889
  • Chen Y, Chen H-N, Wang K, et al. Ketoconazole exacerbates mitophagy to induce apoptosis by downregulating cyclooxygenase-2 in hepatocellular carcinoma. Journal Of Hepatology. 2019;70(1):66–77. doi: 10.1016/j.jhep.2018.09.022
  • Zhang Y-Q, Li X, Shi Y-L, et al. ETCM v2.0: An update with comprehensive resource and rich annotations for traditional Chinese medicine. Acta Pharm Sin B. 2023;13(6):2559–2571. doi: 10.1016/j.apsb.2023.03.012
  • Franz M, Lopes C-T, Fong D, et al. Cytoscape.js 2023 update: a graph theory library for visualization and analysis. Bioinformatics. 2023;39(1):btad031. doi: 10.1093/bioinformatics/btad031
  • Ma Z, Liu Y, Li C, et al. Repurposing a clinically approved prescription colquhounia root tablet to treat diabetic kidney disease via suppressing PI3K/AKT/NF-kB activation. Chin Med. 2022;17(1): doi: 10.1186/s13020-021-00563-7
  • Zhang Y, Mao X, Chen W, et al. A discovery of clinically approved formula FBRP for repositioning to treat HCC by inhibiting PI3K/AKT/NF-κB activation. Molecular Therapy - Nucleic Acids. 2020;19:890–904. doi: 10.1016/j.omtn.2019.12.023
  • Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10
  • Wang J, Zhang C-J, Chia WN, et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun. 2015;6(1):10111. doi: 10.1038/ncomms10111
  • Geng J, Liu W, Gao J, et al. Andrographolide alleviates parkinsonism in MPTP-PD mice via targeting mitochondrial fission mediated by dynamin-related protein 1. Br J Pharmacol. 2019;176(23):4574–4591. doi: 10.1111/bph.14823
  • Liu Y, Mao X, Ma Z, et al. Aberrant regulation of LncRNA TUG1-microRNA-328-3p-SRSF9 mRNA axis in hepatocellular carcinoma: a promising target for prognosis and therapy. Mol Cancer. 2022;21(1): doi: 10.1186/s12943-021-01493-6
  • Facchin C, Perez-Liva M, Garofalakis A, et al. Concurrent imaging of vascularization and metabolism in a mouse model of paraganglioma under anti-angiogenic treatment. Theranostics. 2020;10(8):3518–3532. doi: 10.7150/thno.40687

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.