704
Views
0
CrossRef citations to date
0
Altmetric
Translational Research Paper

DIRAS3 induces autophagy and enhances sensitivity to anti-autophagic therapy in KRAS-driven pancreatic and ovarian carcinomas

ORCID Icon, , , , , , , , , Jr & ORCID Icon show all
Pages 675-691 | Received 12 Apr 2023, Accepted 20 Dec 2023, Published online: 03 Jan 2024

References

  • Downward J. Ras signalling and apoptosis. Curr Opin Genet Dev. 1998;8(1):49–54. doi: 10.1016/S0959-437X(98)80061-0
  • Marshall C. How do small GTPase signal transduction pathways regulate cell cycle entry? Curr Opin Cell Biol. 1999;11(6):732–736. doi: 10.1016/S0955-0674(99)00044-7
  • Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3(6):459–465. doi: 10.1038/nrc1097
  • Mukhopadhyay S, Vander Heiden MG, McCormick F. The metabolic landscape of RAS-Driven cancers from biology to therapy. Nat Cancer. 2021;2(3):271–283. doi: 10.1038/s43018-021-00184-x
  • Diaz-Padilla I, Malpica AL, Minig L, et al. Ovarian low-grade serous carcinoma: a comprehensive update. Gynecol Oncol. 2012;126(2):279–285. doi: 10.1016/j.ygyno.2012.04.029
  • Kimmelman AC. Metabolic dependencies in RAS-Driven cancers. Clin Cancer Res. 2015;21(8):1828–1834. doi: 10.1158/1078-0432.CCR-14-2425
  • Pupo E, Avanzato D, Middonti E, et al. KRAS-Driven metabolic rewiring reveals novel actionable targets in cancer. Front Oncol. 2019;9:848. doi: 10.3389/fonc.2019.00848
  • Kinsey CG, Camolotto SA, Boespflug AM, et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 2019;25(4):620–627. doi: 10.1038/s41591-019-0367-9
  • Bryant KL, Stalnecker CA, Zeitouni D, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 2019;25(4):628–640. doi: 10.1038/s41591-019-0368-8
  • Sutton MN, Lu Z, Li YC, et al. DIRAS3 (ARHI) blocks RAS/MAPK signaling by binding directly to RAS and disrupting RAS clusters. Cell Rep. 2019;29:3448–3459 e6. doi: 10.1016/j.celrep.2019.11.045
  • Nakamura H, Takada K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021;112:3945–3952. doi: 10.1111/cas.15068
  • Wu WL, Papagiannakopoulos T. The pleiotropic role of the KEAP1/NRF2 pathway in cancer. Annu Rev Cancer Biol. 2020;4:413–435. doi: 10.1146/annurev-cancerbio-030518-055627
  • Nowosad A, Jeannot P, Callot C, et al. p27 controls Ragulator and mTOR activity in amino acid-deprived cells to regulate the autophagy–lysosomal pathway and coordinate cell cycle and cell growth. Nat Cell Biol. 2020;22(9):1076–1090. doi: 10.1038/s41556-020-0554-4
  • Liang J, Shao SH, Xu Z-X, et al. The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol. 2007;9(2):218–224. doi: 10.1038/ncb1537
  • Settembre C, Di Malta C, Polito VA, et al. TFEB Links Autophagy to Lysosomal Biogenesis. Science. 2011;332(6036):1429–1433. doi: 10.1126/science.1204592
  • Napolitano G, Ballabio A. TFEB at a glance. J Cell Sci. 2016;129:2475–2481. doi: 10.1242/jcs.146365
  • Hennig P, Fenini G, Di Filippo M, et al. The pathways underlying the multiple roles of p62 in inflammation and cancer. Biomedicines. 2021;9(7):707. doi: 10.3390/biomedicines9070707
  • Komatsu M, Kurokawa H, Waguri S, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol. 2010;12(3):213–223. doi: 10.1038/ncb2021
  • Prior IA, Muncke C, Parton RG, et al. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Bio. 2003;160(2):165–170. doi: 10.1083/jcb.200209091
  • Zhou Y, Gorfe AA, Hancock JF. RAS nanoclusters selectively sort distinct lipid headgroups and acyl chains. Front Mol Biosci. 2021;8:686338. doi: 10.3389/fmolb.2021.686338
  • Jeon S-M, Hay N. The dark face of AMPK as an essential tumor promoter. Cell Logist. 2012;2:197–202. doi: 10.4161/cl.22651
  • Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab. 2017;25(5):1037–1043. doi: 10.1016/j.cmet.2017.04.004
  • Guo JY, Teng X, Laddha SV, et al. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes Dev. 2016;30(15):1704–1717. doi: 10.1101/gad.283416.116
  • Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22(3):377–388. doi: 10.1038/cdd.2014.150
  • Reczek CR, Chandel NS. The two faces of reactive oxygen species in cancer. Annu Rev Cancer Biol. 2017;1(1):79–98. doi: 10.1146/annurev-cancerbio-041916-065808
  • Mauthe M, Orhon I, Rocchi C, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14(8):1435–1455. doi: 10.1080/15548627.2018.1474314
  • Rebecca VW, Nicastri MC, Fennelly C, et al. PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov. 2019;9(2):220–229. doi: 10.1158/2159-8290.CD-18-0706
  • Gray JP, Bildik GE, Sutton MN, et al. Abstract 3599: helical stapled peptides derived from DIRAS3 block KRAS dimerization and downstream MEK/ERK signaling in pancreatic and ovarian carcinomas. Cancer Res. 2022;82(12_Supplement):3599–3599. doi: 10.1158/1538-7445.AM2022-3599
  • Bildik G, Liang X, Sutton MN, et al. DIRAS3: an imprinted tumor suppressor gene that regulates RAS and PI3K-driven cancer growth, motility, autophagy, and tumor dormancy. Mol Cancer Ther. 2022;21(1):25–37. doi: 10.1158/1535-7163.MCT-21-0331
  • Wu X, Liang L, Dong L, et al. Effect of ARHI on lung cancer cell proliferation, apoptosis and invasion in vitro. Mol Biol Rep. 2013;40(3):2671–2678. doi: 10.1007/s11033-012-2353-x
  • Yuan J, Luo RZ, Fujii S, et al. Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers. Cancer Res. 2003;63:4174–4180.
  • Ouyang J, Pan X, Hu Z. The role of aplysia ras homolog I in colon cancer cell invasion and adhesion. Exp Ther Med. 2017;14:5193–5199. doi: 10.3892/etm.2017.5122
  • Fernandez ML, DiMattia GE, Dawson A, et al. Differences in MEK inhibitor efficacy in molecularly characterized low-grade serous ovarian cancer cell lines. Am J Cancer Res. 2016;6:2235–2251.
  • De Thaye E, Van de Vijver K, Van der Meulen J, et al. Establishment and characterization of a cell line and patient-derived xenograft (PDX) from peritoneal metastasis of low-grade serous ovarian carcinoma. Sci Rep. 2020;10:6688. doi: 10.1038/s41598-020-63738-6
  • Gump JM, Thorburn A. Sorting cells for basal and induced autophagic flux by quantitative ratiometric flow cytometry. Autophagy. 2014;10(7):1327–1334. doi: 10.4161/auto.29394

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.