3,608
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Combined interactions of amino acids and organic acids in heavy metal binding in plants

ORCID Icon
Article: 2064072 | Received 16 Mar 2022, Accepted 04 Apr 2022, Published online: 02 May 2022

References

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. Heavy metal stress and some mechanisms of plant defense response. Sci World J. 2015;2015:1–12. doi:10.1155/2015/756120.
  • Clemens S, Palmgren MG, Krämer U. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 2002;7(7):309–315. doi:10.1016/S1360-1385(02)02295-1.
  • Viehweger K. How plants cope with heavy metals. Bot Stud. 2014;55(1):1–12. doi:10.1186/1999-3110-55-35.
  • Ahmed E, Holmstrom SJ. Siderophores in environmental research: roles and applications. Microb Biotechnol. 2014;7(3):196–208. doi:10.1111/1751-7915.12117.
  • Dalvi AA, Bhalerao SA. Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci. 2013;2:362–368.
  • Kosakivska IV, Babenko LM, Romanenko KO, Korotka IY, Potters G. Molecular mechanisms of plant adaptive responses to heavy metals stress. Cell Biol Int. 2021;45(2):258–272. doi:10.1002/cbin.11503.
  • Kumar A, Usmani Z, Ahirwal J, Rani P. Phytomanagement of chromium contaminated brown fields. Phytomanage Pollut Sites. 2019;447–469.
  • Gavrilescu M. Enhancing phytoremediation of soils polluted with heavy metals. Curr Opin Biotechnol. 2022;74:21–31. doi:10.1016/j.copbio.2021.10.024.
  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. 2020;11:359. doi:10.3389/fpls.2020.00359.
  • Kochian LV, Piñeros MA, Liu J, Magalhaes JV. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol. 2015;66(1):571–598. doi:10.1146/annurev-arplant-043014-114822.
  • Titov A, Kaznina N, Talanova V. Tyazhelye mentally i rasteniya [Heavy metals and plants]. Petrozavodsk: KarRC of RAS; 2014.
  • Rai V. Role of amino acids in plant responses to stresses. Biol Plant. 2002;45(4):481–487. doi:10.1023/A:1022308229759.
  • Manara A. Plant responses to heavy metal toxicity. Plants and heavy metals. Springer; 2012. p. 27–53.
  • Gill SS, Gill R, Anjum N. Target osmoprotectants for abiotic stress tolerance in crop plants—glycine betaine and proline. Plant Adapt Environ Change. 2014;97–108.
  • Ahmad MA, Gupta M. Exposure of Brassica juncea (L) to arsenic species in hydroponic medium: comparative analysis in accumulation and biochemical and transcriptional alterations. Environ Sci Pollut Res. 2013;20(11):8141–8150. doi:10.1007/s11356-013-1632-y.
  • Paleg L, Douglas T, Van Daal A, Keech D. Proline, betaine and other organic solutes protect enzymes against heat inactivation. Funct Plant Biol. 1981;8(1):107–114. doi:10.1071/PP9810107.
  • Sharma SS, Dietz K-J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot. 2006;57(4):711–726. doi:10.1093/jxb/erj073.
  • Theriappan P, Gupta AK, Dhasarrathan P. Accumulation of proline under salinity and heavy metal stress in cauliflower seedlings. J Appl Sci Environ Manage. 2011;15(2). doi:10.4314/jasem.v15i2.68497.
  • Zenk MH. Heavy metal detoxification in higher plants-a review. Gene. 1996;179(1):21–30. doi:10.1016/S0378-1119(96)00422-2.
  • Sharma S, Vredenburg H. Proactive corporate environmental strategy and the development of competitively valuable organizational capabilities. Strategic Manage J. 1998;19(8):729–753. doi:10.1002/(SICI)1097-0266(199808)19:8<729::AID-SMJ967>3.0.CO;2-4.
  • Mertens D. AOAC official method 922.02. Plants preparation of laboratory sample. Off Methods Anal Chapter. 2005;3:20877–22417.
  • Heinrikson RL, Meredith SC. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984;136(1):65–74. doi:10.1016/0003-2697(84)90307-5.
  • Saunders J, Saunders J, Morris S, Wynne S. Amino acid analysis of subcellular fractions by PITC and OPA. Chromatogram. 1988;9:2–4.
  • Senden M, Van der Meer A, Limborgh J, Wolterbeek HT. Analysis of major tomato xylem organic acids and PITC-derivatives of amino acids by RP-HPLC and UV detection. Plant Soil. 1992;142(1):81–89. doi:10.1007/BF00010177.
  • Angelini R, Federico R. Histochemical evidence of polyamine oxidation and generation of hydrogen peroxide in the cell wall. J Plant Physiol. 1989;135(2):212–217. doi:10.1016/S0176-1617(89)80179-8.
  • Angelini R, Manes F, Federico R. Spatial and functional correlation between diamine-oxidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea stems. Planta. 1990;182(1):89–96. doi:10.1007/BF00239989.
  • Havir EA, McHale NA. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 1987;84(2):450–455. doi:10.1104/pp.84.2.450.
  • Yildirim E, Ekinci M, Turan M. Impact of biochar in mitigating the negative effect of drought stress on cabbage seedlings. J Soil Sci Plant Nutr. 2021;21(3):2297–2309. doi:10.1007/s42729-021-00522-z.
  • Agarwal S, Pandey V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant. 2004;48(4):555–560. doi:10.1023/B:BIOP.0000047152.07878.e7.
  • Yordanova RY, Christov KN, Popova LP. Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot. 2004;51(2):93–101. doi:10.1016/S0098-8472(03)00063-7.
  • Malik RN, Husain SZ, Nazir I. Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pak J Bot. 2010;42:291–301.
  • Bhat IUH, Mauris EN, Khanam Z. Phytoremediation of iron from red soil of tropical region by using Centella asiatica. Int J Phytoremediation. 2016;18(9):918–923. doi:10.1080/15226514.2016.1156637.
  • Campalans A, Messeguer R, Goday A, Pagès M. Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiol Biochem. 1999;37(5):327–340. doi:10.1016/S0981-9428(99)80039-4.
  • Mohanty P, Matysik J, Matysik J. Effect of proline on the production of singlet oxygen. Amino Acids. 2001;21(2):195–200. doi:10.1007/s007260170026.
  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. A fern that hyperaccumulates arsenic. Nature. 2001;409(6820):579. doi:10.1038/35054664.
  • Barneix AJ. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. J Plant Physiol. 2007;164(5):581–590. doi:10.1016/j.jplph.2006.03.009.
  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–633. doi:10.1016/S1097-2765(03)00105-9.
  • Kumar A, Dwivedi S, Singh R, Chakrabarty D, Mallick S, Trivedi P, Adhikari B, Tripathi RD. Evaluation of amino acid profile in contrasting arsenic accumulating rice genotypes under arsenic stress. Biol Plant. 2014;58(4):733–742. doi:10.1007/s10535-014-0435-4.
  • Yazdi M, Kolahi M, Kazemi EM, Barnaby AG. Study of the contamination rate and change in growth features of lettuce (Lactuca sativa Linn.) in response to cadmium and a survey of its phytochelatin synthase gene. Ecotoxicol Environ Saf. 2019;180:295–308. doi:10.1016/j.ecoenv.2019.04.071.
  • Rabêlo FHS, Fernie AR, Navazas A, Borgo L, Keunen E, da Silva B, Cuypers A, Lavres J. A glimpse into the effect of sulfur supply on metabolite profiling, glutathione and phytochelatins in Panicum maximum cv. Massai exposed to cadmium. Environm Exp Bot. 2018;151:76–88. doi:10.1016/j.envexpbot.2018.04.003.
  • Fu H, Yu H, Li T, Zhang X. Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicol Environ Saf. 2018;150:168–175. doi:10.1016/j.ecoenv.2017.12.014.
  • Pidatala VR, Li K, Sarkar D, Wusirika R, Datta R. Comparative metabolic profiling of vetiver (Chrysopogon zizanioides) and maize (Zea mays) under lead stress. Chemosphere. 2018;193:903–911. doi:10.1016/j.chemosphere.2017.11.087.
  • Wang Y, Xu L, Shen H, Wang J, Liu W, Zhu X, Wang R, Sun X, Liu L. Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb & Cd stress response of radish roots. Sci Rep. 2015;5(1):1–13. doi:10.1038/srep18296.
  • Handa N, Kohli SK, Thukral AK, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P. Protective role of selenium against chromium stress involving metabolites and essential elements in Brassica juncea L. seedlings. 3 Biotech. 2018;8(1):1–14. doi:10.1007/s13205-018-1087-4.
  • Berlin M, Barchel D, Brik A, Kohn E, Livne A, Keidar R, Tovbin J, Betser M, Moskovich M, Mandel D. Maternal and newborn thyroid hormone, and the Association With Polychlorinated Biphenyls (PCBs) burden: the EHF (Environmental Health Fund) birth Cohort. Front Pediatr. 2021;9. doi:10.3389/fped.2021.705395.
  • Rocha JE, Guedes TA, Bezerra CF, Costa M, Campina FF, de Freitas TS, Souza AK, Sobral Souza CE, Silva MKN, Lobo YM, et al. Mercury chloride phytotoxicity reduction using antioxidative mechanisms evidenced by caffeic acid FTIR. Appl Geochem. 2019;104:109–115. doi:10.1016/j.apgeochem.2019.03.015.
  • Ranieri E, Moustakas K, Barbafieri M, Ranieri AC, Herrera‐Melián JA, Petrella A, Tommasi F. Phytoextraction technologies for mercury‐and chromium‐contaminated soil: a review. J Chem Technol Biotechnol. 2020;95(2):317–327. doi:10.1002/jctb.6008.
  • Cosio C, Renault D. Effects of cadmium, inorganic mercury and methyl-mercury on the physiology and metabolomic profiles of shoots of the macrophyte Elodea nuttallii. Environ Pollut. 2020;257:113557. doi:10.1016/j.envpol.2019.113557.
  • Feng Z, Ji S, Ping J, Cui D. Recent advances in metabolomics for studying heavy metal stress in plants. TrAC Trends Anal Chem. 2021;143:116402. doi:10.1016/j.trac.2021.116402.
  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJ, Smith JAC. Free histidine as a metal chelator in plants that accumulate nickel. Nature. 1996;379(6566):635–638. doi:10.1038/379635a0.
  • Sun L, Xu X, Jiang Y, Zhu Q, Yang F, Zhou J, Yang Y, Huang Z, Li A, Chen L. Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice. Front Plant Sci. 2016;7:1407. doi:10.3389/fpls.2016.01407.
  • Etesami H, Maheshwari DK. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf. 2018;156:225–246. doi:10.1016/j.ecoenv.2018.03.013.
  • Ježek P, Hlušek J, Lošák T, Jůzl M, Elzner P, Kráčmar S, Buňka F, Martensson A. Effect of foliar application of selenium on the content of selected amino acids in potato tubers (Solanum tuberosum L.). Plant Soil Environ. 2011;57(No. 7):315–320. doi:10.17221/57/2011-PSE.
  • Hanushek EA, Woessmann L. Education and economic growth. Econ Edu. 2010;60:67.
  • Osmolovskaya N, Viet Vu D, Kuchaeva L. The role of organic acids in heavy metal tolerance in plants. Biol Commun. 2018;63(1):9–16. doi:10.21638/spbu03.2018.103.
  • Gao Y, He J, Ling W, Hu H, Liu F. Effects of organic acids on copper and cadmium desorption from contaminated soils. Environ Int. 2003;29(5):613–618. doi:10.1016/S0160-4120(03)00048-5.
  • Ebrahimian E, Bybordi A. Effect of organic acids on heavy-metal uptake and growth of canola grown in contaminated soil. Commun Soil Sci Plant Anal. 2014;45(13):1715–1725. doi:10.1080/00103624.2013.875206.
  • Hasanuzzaman M. Agronomic crops: volume 3: stress responses and tolerance. Springer Nature; 2020.
  • Singh M, Kumar J, Singh S, Singh V, Prasad S, Singh M. Adaptation strategies of plants against heavy metal toxicity: a short review. Biochem Pharmacol. 2015;4:2167–0501.1000161.
  • Gupta DK, Palma JM, Corpas FJ. Reactive oxygen species and oxidative damage in plants under stress. Springer; 2015.
  • Yadav G, Srivastava PK, Singh VP, Prasad SM. Light intensity alters the extent of arsenic toxicity in Helianthus annuus L. seedlings. Biol Trace Elem Res. 2014;158(3):410–421. doi:10.1007/s12011-014-9950-6.
  • Singh S, Prasad SM. Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Sci Hortic (Amsterdam). 2014;176:1–10. doi:10.1016/j.scienta.2014.06.022.
  • Huang H, Ullah F, Zhou D-X, Yi M, Zhao Y. Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci. 2019;10:800. doi:10.3389/fpls.2019.00800.
  • Shah V, Daverey A. Effects of sophorolipids augmentation on the plant growth and phytoremediation of heavy metal contaminated soil. J Clean Prod. 2021;280:124406. doi:10.1016/j.jclepro.2020.124406.
  • Yildirim E, Ekinci M, Turan M, Güleray A, Selda Ö, Dursun A, et al. Impact of cadmium and lead heavy metal stress on plant growth and physiology of rocket (Eruca sativa L.). Kahramanmaras Sütçü Imam Üniversitesi Tarim ve Doga Dergisi. 2019;22:843–850.
  • El-Enany A, Issa A. Proline alleviates heavy metal stress inScenedesmus armatus. Folia Microbiol (Praha). 2001;46(3):227–230. doi:10.1007/BF02818538.
  • Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox-and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol. 2016;90:1–37. doi:10.1007/s00204-015-1579-5.
  • Zhu J-K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53:247–273. doi:10.1146/annurev.arplant.53.091401.143329.
  • Hossain MA, Piyatida P, da Silva JAT, Fujita M. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. 2012;2012:1–37. doi:10.1155/2012/872875.
  • Mishra P, Bhoomika K, Dubey R. Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma. 2013;250:3–19. doi:10.1007/s00709-011-0365-3.
  • AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci. 2016;7:276. doi:10.3389/fpls.2016.00276.
  • Choudhary M, Jetley UK, Khan MA, Zutshi S, Fatma T. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf. 2007;66:204–209. doi:10.1016/j.ecoenv.2006.02.002.
  • Hassan M, Israr M, Mansoor S, Hussain SA, Basheer F, Azizullah A. Acclimation of cadmium-induced genotoxicity and oxidative stress in mung bean seedlings by priming effect of phytohormones and proline. Plos one. 2021;16(9):e0257924. doi:10.1371/journal.pone.0257924.
  • Cheng Y, Song C. Hydrogen peroxide homeostasis and signaling in plant cells. Sci China Series C Life Sci-English Edition. 2006;49:1.
  • Hussain A, Kamran MA, Javed MT, Hayat K, Farooq MA, Ali N, Ali N, Ali M, Manghwar H, Jan F, et al. Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environ Exp Bot. 2019;159:23–33. doi:10.1016/j.envexpbot.2018.12.006.
  • Ling T, Gao Q, Du H, Zhao Q, Ren J. Growing, physiological responses and Cd uptake of Corn (Zea mays L.) under different Cd supply. Chem Speciation Bioavailability. 2017;29:216–221. doi:10.1080/09542299.2017.1400924.
  • Su T, Li W, Wang P, Ma C. Dynamics of peroxisome homeostasis and its role in stress response and signaling in plants. Front Plant Sci. 2019;10:705. doi:10.3389/fpls.2019.00705.