1,781
Views
4
CrossRef citations to date
0
Altmetric
Review

Characteristics analysis of Early Responsive to Dehydration genes in Arabidopsis thaliana (AtERD)

ORCID Icon, , , , , & show all
Article: 2105021 | Received 31 May 2022, Accepted 18 Jul 2022, Published online: 02 Aug 2022

References

  • Karim S. Exploring plant tolerance to biotic and abiotic stresses. Acta Universitatis Agriculturae Sueciae. 2007;58. https://www.researchgate.net/publication/276161893_Exploring_plant_tolerance_to_biotic_and_abiotic_stresses
  • Ma Q, Xu X, Xie Y, Huang T, Wang W, Zhao L, Ma D. Comparative metabolomic analysis of the metabolism pathways under drought stress in alfalfa leaves. Environ Exp Bot. 2021;183:104329. doi:10.1016/j.envexpbot.2020.104329.
  • Sprenger H, Kurowsky C, Horn R, Erban A, Seddig S, Rudack K, Fischer A, Walther D, Zuther E, Köhl K, et al. The drought response of potato reference cultivars with contrasting tolerance. Plant Cell Environ. 2016;39(11):2370–8. doi:10.1111/pce.12780.
  • Wang N, Liu Y, Cai Y, Tang J, Li Y, Gai J. The soybean U-box gene GmPUB6 regulates drought tolerance in Arabidopsis thaliana. Plant Physiology and Biochemistry. 2020;155:284–296. doi:10.1016/j.plaphy.2020.07.016.
  • Shamsunnaher S, Chen X, Zhang -X-X, Wu X, Huang X, Song W-Y. Rice immune sensor XA21 differentially enhances plant growth and survival under distinct levels of drought. Scientific Reports. 2020;10(1):16938. doi:10.1038/s41598-020-73128-7.
  • Zhang X, Zhai P, Huang J, Zhao X, Dong K, Hui D. Responses of ecosystem water use efficiency to spring snow and summer water addition with or without nitrogen addition in a temperate steppe. PLoS One. 2018;13(3):e0194198. doi:10.1371/journal.pone.0194198.
  • Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought. Science. 2020;368(6488):266–269. doi:10.1126/science.aaz7614.
  • Di Mambro R, Dello Ioio R. Root stem cells: how to establish and maintain the eternal youth. Rend Lincei. 2020;31(2):223–230. doi:10.1007/s12210-020-00893-y.
  • Chai C, Shankar R, Jain M, Subudhi PK. Genome-wide discovery of DNA polymorphisms by whole genome sequencing differentiates weedy and cultivated rice. Sci Rep. 2018;8(1):14218. doi:10.1038/s41598-018-32513-z.
  • Pecoraro A, Carotenuto P, Russo G, Russo A. Ribosomal protein uL3 targets E2F1 and Cyclin D1 in cancer cell response to nucleolar stress. Scientific Reports. 2019;9(1):15431. doi:10.1038/s41598-019-51723-7.
  • Zhou B, Zhang L, Ullah A, Jin X, Yang X, Zhang X, Fang DD. Identification of multiple stress responsive genes by sequencing a normalized cDNA library from sea-land cotton (Gossypium barbadense L.). PLoS One. 2016;11(3):e0152927. doi:10.1371/journal.pone.0152927.
  • Alves MS, Reis PAB, Dadalto SP, Faria JAQA, Fontes EPB, Fietto LG. A novel transcription factor, ERD15 (early responsive to Dehydration 15), connects endoplasmic reticulum stress with an osmotic stress-induced cell death signal. J Biol Chem. 2011b;286(22):20020–20030. doi:10.1074/jbc.M111.233494.
  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. ERD15, a cDNA for a dehydration-induced gene from Arabidopsis thaliana. Plant Physiol. 1994b;106(4):1707. doi:10.1104/pp.106.4.1707.
  • Lv K, Wei H, Jiang J. Overexpression of BplERD15 enhances drought tolerance in Betula platyphylla suk. Forests. 2020;11(9):978. doi:10.3390/f11090978.
  • Taji T, Seki M, Yamaguchi-Shinozaki K, Kamada H, Giraudat J, Shinozaki K. Mapping of 25 drought-inducible genes, RD and ERD, in Arabidopsis thaliana. Plant Cell Physiol. 1999;40(1):119–123. doi:10.1093/oxfordjournals.pcp.a029469.
  • Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. A nuclear gene, erd1, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J. 1997;12(4):851–861. doi:10.1046/j.1365-313X.1997.12040851.x.
  • Dunkley TPJ, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, et al. Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci U S A. 2006;103(17):6518–6523. doi:10.1073/pnas.0506958103.
  • Rosado A, Schapire AL, Bressan RA, Harfouche AL, Hasegawa PM, Valpuesta V, Botella MA. The Arabidopsis tetratricopeptide repeat-containing protein TTL1 is required for osmotic stress responses and abscisic acid sensitivity. Plant Physiol. 2006;142(3):1113–1126. doi:10.1104/pp.106.085191.
  • Song X, Weng Q, Zhao Y, Ma H, Song J, Su L, Yuan J, Liu Y. Cloning and expression analysis of ZmERD3 gene from zea mays. Iranian Journal of Biotechnology. 2018;16(2):140–147. doi:10.21859/ijb.1593.
  • Devi K, Prathima PT, Gomathi R, Manimekalai R, Lakshmi K, Selvi A. Gene expression profiling in sugarcane genotypes during drought stress and Rehydration. Sugar Tech. 2019;21(5):717–733. doi:10.1007/s12355-018-0687-y.
  • Nguyen SD, Kang H. Gene cloning and transformation of Arabidopsis plant to study the functions of the early responsive to Dehydration gene (ERD4) in coffee genome. Science and Technology Development Journal. 2016;19(2):53–63. doi:10.32508/stdj.v19i2.789.
  • Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell. 1996;8(8):1323–1335. doi:10.1105/tpc.8.8.1323.
  • Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of arabidopsis. Plant Physiol. 1998;118(4):1233–1241. doi:10.1104/pp.118.4.1233.
  • Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K. ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim Biophys Acta - Biomembr. 1998;1370(2):187–191. doi:10.1016/S0005-2736(98)00007-8.
  • Nishio S, Hayashi T, Shirasawa K, Saito T, Terakami S, Takada N, Takeuchi Y, Moriya S, Itai A. Genome-wide association study of individual sugar content in fruit of Japanese pear (Pyrus spp.). BMC Plant Biol. 2021;21(1):378. doi:10.1186/s12870-021-03130-2.
  • Barajas-Lopez JDD, Tiwari A, Zarza X, Shaw MW, Pascual J, Punkkinen M, Bakowska JC, Munnik T, Fujii H. EARLY RESPONSE to DEHYDRATION 7 remodels cell membrane lipid composition during cold stress in Arabidopsis. Plant Cell Physiol. 2021;62(1):80–91. doi:10.1093/pcp/pcaa139.
  • Doner NM, Seay D, Mehling M, Sun S, Gidda SK, Schmitt K, Braus GH, Ischebeck T, Chapman KD, Dyer JM, et al. Arabidopsis thaliana EARLY RESPONSIVE TO DEHYDRATION 7 localizes to lipid droplets via its senescence domain. Front Plant Sci. 2021;12. doi:10.3389/fpls.2021.658961.
  • Milioni D, Hatzopoulos P. Genomic organization of hsp90 gene family in Arabidopsis. Plant Molecular Biology. 1997;35(6):955–961. doi:10.1023/A:1005874521528.
  • Tantos A, Friedrich P, Tompa P. Cold stability of intrinsically disordered proteins. FEBS Lett. 2009;583(2):465–469. doi:10.1016/j.febslet.2008.12.054.
  • Yabe N, Takahashi T, Komeda Y. Analysis of tissue-specific expression of Arabidopsis thaliana HSP90-family gene HSP81. Plant Cell Physiol. 1994;35(8):1207–1219. doi:10.1093/oxfordjournals.pcp.a078715.
  • Alves MS, Fontes EPB, Fietto LG. EARLY RESPONSIVE to DEHYDRATION 15, a new transcription factor that integrates stress signaling pathways. Plant Signal Behav. 2011a;6(12):1993–1996. doi:10.4161/psb.6.12.18268.
  • Kim SY, Nam KH. Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Rep. 2010;29(2):203–209. doi:10.1007/s00299-009-0813-0.
  • Gupta K, Jha B, Agarwal PK. A Dehydration-Responsive Element Binding (DREB) transcription factor from the succulent halophyte salicornia brachiata enhances abiotic stress tolerance in transgenic Tobacco. Mar Biotechnol. 2014;16(6):657–673. doi:10.1007/s10126-014-9582-z.
  • Kovacs D, Kalmar E, Torok Z, Tompa P. Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol. 2008;147(1):381–390. doi:10.1104/pp.108.118208.
  • Lu Y, Sun X, Yao J, Chai Y, Zhao X, Zhang L, Song J, Pang YZ, Wu W, Tang K. Isolation and expression of cold-regulated cDNA from Chinese cabbage (Brassica pekinensis). DNA Seq - J DNA Seq Mapp. 2003;14(3):219–222. doi:10.1080/1042517031000095381.
  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. Characterization of two cDNAs (ERD11 and ERD13) for dehydration-inducible genes that encode putative glutathione S -transferases in Arabidopsis thaliana L. FEBS Lett. 1993;335(2):189–192. doi:10.1016/0014-5793(93)80727-C.
  • Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ, Koch K-W. Sorting signals, N-Terminal modifications and abundance of the chloroplast proteome. PLoS One. 2008;3(4):e1994. doi:10.1371/journal.pone.0001994.
  • Alsheikh MK, Heyen BJ, Randall SK. Ion binding properties of the Dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem. 2003;278(42):40882–40889. doi:10.1074/jbc.M307151200.
  • Kiyosue T, Yamaguchi-shinozaki K, Shinozaki K. Characterization of two cDNAs (erd10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol. 1994a;35:225–231.
  • Maszkowska J, Dębski J, Kulik A, Kistowski M, Bucholc M, Lichocka M, Klimecka M, Sztatelman O, Szymańska KP, Dadlez M, et al. Phosphoproteomic analysis reveals that dehydrins ERD10 and ERD14 are phosphorylated by SNF1-related protein kinase 2.10 in response to osmotic stress. Plant Cell Environ. 2019;42(3):931–946. doi:10.1111/pce.13465.
  • Alhabeeb MJ. Pathogen-induced defense signaling and signal crosstalk in Arabidopsis. Hoboken (NJ, USA): John Wiley & Sons, Inc; 2012. 311–329.
  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Two different novel cis -acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J. 2003;33(2):259–270. doi:10.1046/j.1365-313X.2003.01624.x.
  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Mol Biol. 1994c;25(5):791–798. doi:10.1007/BF00028874.
  • Bruch EM, Rosano GL, Ceccarelli EA. Chloroplastic Hsp100 chaperones ClpC2 and ClpD interact in vitro with a transit peptide only when it is located at the N-terminus of a protein. BMC Plant Biol. 2012;12(1):57. doi:10.1186/1471-2229-12-57.
  • Nazari B, Mohammadifar MA, Shojaee-Aliabadi S, Feizollahi E, Mirmoghtadaie L. Effect of ultrasound treatments on functional properties and structure of millet protein concentrate. Ultrasonics Sonochemistry. 2018;41:382–388. doi:10.1016/j.ultsonch.2017.10.002.
  • Behnam B, Iuchi S, Fujita M, Fujita Y, Takasaki H, Osakabe Y, Yamaguchi-Shinozaki K, Kobayashi M, Shinozaki K. Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Res. 2013;20(4):315–324. doi:10.1093/dnares/dst012.
  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. NAC transcription factors in plant abiotic stress responses. Biochimica Et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2012;1819(2):97–103. doi:10.1016/j.bbagrm.2011.10.005.
  • Dunaeva M, Adamska I. Identification of genes expressed in response to light stress in leaves of Arabidopsis thaliana using RNA differential display. Eur J Biochem. 2001;268(21):5521–5529. doi:10.1046/j.1432-1033.2001.02471.x.
  • Gong B, Yan Y, Wen D, Shi Q. Hydrogen peroxide produced by NADPH oxidase: a novel downstream signaling pathway in melatonin-induced stress tolerance in Solanum lycopersicum. Physiol Plant. 2017;160(4):396–409. doi:10.1111/ppl.12581.
  • Nandini B, Geetha N, Prakash HS, Hariparsad P. Natural uptake of anti-oomycetes Trichoderma produced secondary metabolites from pearl millet seedlings – a new mechanism of biological control of downy mildew disease. Biological Control. 2021;156:104550. doi:10.1016/j.biocontrol.2021.104550.
  • Ziaf K, Loukehaich R, Gong P, Liu H, Han Q, Wang T, Li H, Ye Z. A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. Plant Cell Physiol. 2011;52(6):1055–1067. doi:10.1093/pcp/pcr057.
  • Yu D, Zhang L, Zhao K, Niu R, Zhai H, Zhang J. VaERD15, a transcription factor gene associated with cold-tolerance in Chinese wild Vitis amurensis. Frontiers in Plant Science. 2017;8. doi:10.3389/fpls.2017.00297.
  • Liu Y, Li H, Shi Y, Song Y, Wang T, Li Y. A maize early responsive to dehydration gene, ZmERD4, provides enhanced drought and salt tolerance in Arabidopsis. Plant Molecular Biology Reporter. 2009;27(4):542–548. doi:10.1007/s11105-009-0119-y.
  • Wenhong Fu. Expression of Ms ERD15 and construction of expression vector in Alfalfa. Henan Agricultural University; 2017. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201801&filename=1017279017.nh
  • Linh TM, Mai NC, Hoe PT, Lien LQ, Ban NK, Hien LTT, Chau NH, Van NT. Metal-based nanoparticles enhance drought tolerance in soybean. J Nanomater. 2020;2020:1–13. doi:10.1155/2020/4056563.
  • Divya K, Kavi Kishor PB, Bhatnagar-Mathur P, Singam P, Sharma KK, Vadez V, Reddy PS. Isolation and functional characterization of three abiotic stress-inducible (Apx, Dhn and Hsc70) promoters from pearl millet (Pennisetum glaucum L.). Mol Biol Rep. 2019;46(6):6039–6052. doi:10.1007/s11033-019-05039-4.
  • Lindquist S, Craig EA. THE HEAT-SHOCK PROTEINS. Annual Review of Genetics. 1988;22(1):631–677. doi:10.1146/annurev.ge.22.120188.003215.
  • Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004;9(5):244–252. doi:10.1016/j.tplants.2004.03.006.
  • Kummari D, Bhatnagar-Mathur P, Sharma KK, Vadez V, Palakolanu SR. Functional characterization of the promoter of pearl millet heat shock protein 10 (PgHsp10) in response to abiotic stresses in transgenic tobacco plants. Int J Biol Macromol. 2020;156:103–110. doi:10.1016/j.ijbiomac.2020.04.069.
  • Blomberg A. Global changes in protein synthesis during adaptation of the yeast Saccharomyces cerevisiae to 0.7 M NaCl. J Bacteriol. 1995;177(12):3563–3572. doi:10.1128/jb.177.12.3563-3572.1995.
  • Cho EK, Hong CB. Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant Cell Rep. 2006;25(4):349–358. doi:10.1007/s00299-005-0093-2.
  • Song J, Weng Q, Ma H, Yuan J, Wang L, Liu Y. Cloning and expression analysis of the Hsp70 gene ZmERD2 in Zea mays. Biotechnology & Biotechnological Equipment. 2016;30(2):219–226. doi:10.1080/13102818.2015.1131625.
  • Kimura M, Yamamoto YY, Seki M, Sakurai T, Sato M, Abe T, Yoshida S, Manabe K, Shinozaki K, Matsui M. Identification of Arabidopsis genes regulated by high light–stress using cDNA microarray¶. Photochem Photobiol. 2003;77(2):226. doi:10.1562/0031-8655(2003)077<0226:ioagrb>2.0.co;2.
  • Khamis G, Winkelmann T, Schaarschmidt F, Papenbrock J. Establishment of an in vitro propagation and transformation system of Balanites aegyptiaca. Plant Cell Tissue Organ Cult. 2016;125(3):457–470. doi:10.1007/s11240-016-0961-1.
  • Hernández-Sánchez IE, Maruri-López I, Graether SP, Jiménez-Bremont JF. In vivo evidence for homo- and heterodimeric interactions of Arabidopsis thaliana dehydrins AtCOR47, AtERD10, and AtRAB18. Sci Rep. 2017;7(1):17036. doi:10.1038/s41598-017-15986-2.
  • Bokor M, Csizmók V, Kovács D, Bánki P, Friedrich P, Tompa P, Tompa K. NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Biophys J. 2005;88(3):2030–2037. doi:10.1529/biophysj.104.051912.
  • Tompa P, Bánki P, Bokor M, Kamasa P, Kovács D, Lasanda G, Tompa K. Protein-water and protein-buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects. Biophysical Journal. 2006;91(6):2243–2249. doi:10.1529/biophysj.106.084723.
  • Wu J, Folta KM, Xie Y, Jiang W, Lu J, Zhang Y. Overexpression of Muscadinia rotundifolia CBF2 gene enhances biotic and abiotic stress tolerance in Arabidopsis. Protoplasma. 2017;254(1):239–251. doi:10.1007/s00709-015-0939-6.
  • Wuebbles DJ, Kunkel K, Wehner M, Zobel Z. Severe weather in United States under a changing climate. Eos (Washington DC). 2014;95:149–150.
  • Hsieh EJ, Cheng MC, Lin TP. Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol Biol. 2013;82(3):223–237. doi:10.1007/s11103-013-0054-z.
  • Sun S, Yu J-P, Chen F, Zhao T-J, Fang X-H, Li Y-Q, Sui S-F. TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. Journal of Biological Chemistry. 2008;283(10):6261–6271. doi:10.1074/jbc.M706800200.
  • Nguyen PN, Tossounian M-A, Kovacs DS, Thu TT, Stijlemans B, Vertommen D, Pauwels J, Gevaert K, Angenon G, Messens J, et al. Dehydrin ERD14 activates glutathione transferase Phi9 in Arabidopsis thaliana under osmotic stress. Biochimica Et Biophysica Acta (BBA) - General Subjects. 2020;1864(3):129506. doi:10.1016/j.bbagen.2019.129506.
  • Vinet L, Zhedanov A. A ‘missing’ family of classical orthogonal polynomials. Journal of Physics A: Mathematical and Theoretical. 2011;44(8):085201. doi:10.1088/1751-8113/44/8/085201.
  • Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao DY, Li J, Wang PY, Qin F, et al. Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci. 2020;63(5):635–674. doi:10.1007/s11427-020-1683-x.
  • Jones AM, Xuan Y, Xu M, Wang R-S, Ho C-H, Lalonde S, You CH, Sardi MI, Parsa SA, Smith-Valle E, et al. Border Control—A Membrane-Linked Interactome of Arabidopsis. Science. 2014;344(6185):711–716. doi:10.1126/science.1251358.
  • Paul S, Roychoudhury A. Transcript analysis of abscisic acid-inducible genes in response to different abiotic disturbances in two indica rice varieties. Theoretical and Experimental Plant Physiology. 2019;31(1):249–272. doi:10.1007/s40626-018-0131-4.
  • Slawinski L, Israel A, Paillot C, Thibault F, Cordaux R, Atanassova R, Dédaldéchamp F, Laloi M. Early response to dehydration six-like transporter family: early origin in streptophytes and evolution in land plants. Frontiers in Plant Science. 2021;12. doi:10.3389/fpls.2021.681929.
  • Yamada M, Hamatani T, Akutsu H, Chikazawa N, Kuji N, Yoshimura Y, Umezawa A. Involvement of a novel preimplantation-specific gene encoding the high mobility group box protein Hmgpi in early embryonic development. Human Molecular Genetics. 2010;19(3):480–493. doi:10.1093/hmg/ddp512.
  • Jia F, Qi S, Li H, Liu P, Li P, Wu C, Zheng C, Huang J. Overexpression of late embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance. Biochem Biophys Res Commun. 2015;454(4):505–511. doi:10.1016/j.bbrc.2014.10.136.
  • Thomann EB, Sollinger J, White C, Rivin CJ. Accumulation of group 3 late embryogenesis abundant proteins in zea mays embryos. Plant Physiol. 1992;99(2):607–614. doi:10.1104/pp.99.2.607.
  • Tiburcio AF, Wollenweber B, Zilberstein A, Koncz C. Abiotic stress tolerance. Plant Sci. 2012;182:1–2. doi:10.1016/j.plantsci.2011.09.005.
  • Yin M, Wang Y, Zhang L, Li J, Quan W, Yang L, Wang Q, Chan Z. The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress. Journal of Experimental Botany. 2017;68(11):2991–3005. doi:10.1093/jxb/erx157.
  • Gutiérrez RA, Green PJ, Keegstra K, Ohlrogge JB. Phylogenetic profiling of the Arabidopsis thaliana proteome: what proteins distinguish plants from other organisms? Genome Biol. 2004;5(8):R53. doi:10.1186/gb-2004-5-8-r53.
  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One. 2014;9(3):e92913. doi:10.1371/journal.pone.0092913.
  • Hua L, Challa GS, Subramanian S, Gu X, Li W. Genome-Wide Identification of drought response genes in soybean seedlings and development of biomarkers for early diagnoses. Plant Mol Biol Report. 2018;36(2):350–362. doi:10.1007/s11105-018-1085-z.
  • Hussain RM, Ali M, Feng X, Li X. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars. BMC Plant Biol. 2017;17(1):55. doi:10.1186/s12870-017-1001-y.